timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for mvitv2_large_cls.fb_inw21k

A MViT-v2 (multi-scale ViT) image classification model. Pretrained on ImageNet-22k (Winter21 variant) and fine-tuned on ImageNet-1k by paper authors. The classifier layout for this model was not shared and does not match expected lexicographical sorted synset order.

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 234.6
    • GMACs: 42.2
    • Activations (M): 111.7
    • Image size: 224 x 224
  • Papers:
  • Dataset: ImageNet-1k
  • Pretrain Dataset: ImageNet-22k
  • Original: https://github.com/facebookresearch/mvit

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('mvitv2_large_cls.fb_inw21k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mvitv2_large_cls.fb_inw21k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 50, 1152) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Downloads last month
165
Safetensors
Model size
235M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/mvitv2_large_cls.fb_inw21k