Model card for mvitv2_base_cls.fb_inw21k
A MViT-v2 (multi-scale ViT) image classification model. Pretrained on ImageNet-22k (Winter21 variant) and fine-tuned on ImageNet-1k by paper authors. The classifier layout for this model was not shared and does not match expected lexicographical sorted synset order.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 65.4
- GMACs: 10.2
- Activations (M): 40.7
- Image size: 224 x 224
- Papers:
- MViTv2: Improved Multiscale Vision Transformers for Classification and Detection: https://arxiv.org/abs/2112.01526
- Dataset: ImageNet-1k
- Pretrain Dataset: ImageNet-22k
- Original: https://github.com/facebookresearch/mvit
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mvitv2_base_cls.fb_inw21k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mvitv2_base_cls.fb_inw21k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 50, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
- Downloads last month
- 253
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.