Model card for mobilevitv2_200.cvnets_in22k_ft_in1k_384
A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors.
See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 18.4
- GMACs: 16.2
- Activations (M): 72.3
- Image size: 384 x 384
- Papers:
- Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680
- Original: https://github.com/apple/ml-cvnets
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mobilevitv2_200.cvnets_in22k_ft_in1k_384', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilevitv2_200.cvnets_in22k_ft_in1k_384',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 128, 192, 192])
# torch.Size([1, 256, 96, 96])
# torch.Size([1, 512, 48, 48])
# torch.Size([1, 768, 24, 24])
# torch.Size([1, 1024, 12, 12])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilevitv2_200.cvnets_in22k_ft_in1k_384',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 12, 12) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{Mehta2022SeparableSF,
title={Separable Self-attention for Mobile Vision Transformers},
author={Sachin Mehta and Mohammad Rastegari},
journal={ArXiv},
year={2022},
volume={abs/2206.02680}
}
- Downloads last month
- 4,646
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.