Model card for efficientformerv2_s1.snap_dist_in1k
A EfficientFormer-V2 image classification model. Pretrained with distillation on ImageNet-1k.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 6.2
- GMACs: 0.7
- Activations (M): 7.7
- Image size: 224 x 224
- Original: https://github.com/snap-research/EfficientFormer
- Papers:
- Rethinking Vision Transformers for MobileNet Size and Speed: https://arxiv.org/abs/2212.08059
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('efficientformerv2_s1.snap_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'efficientformerv2_s1.snap_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'efficientformerv2_s1.snap_dist_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g. for efficientformerv2_l:
# torch.Size([2, 40, 56, 56])
# torch.Size([2, 80, 28, 28])
# torch.Size([2, 192, 14, 14])
# torch.Size([2, 384, 7, 7])
print(o.shape)
Model Comparison
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
efficientformerv2_l.snap_dist_in1k | 83.628 | 96.54 | 26.32 | 224 |
efficientformer_l7.snap_dist_in1k | 83.368 | 96.534 | 82.23 | 224 |
efficientformer_l3.snap_dist_in1k | 82.572 | 96.24 | 31.41 | 224 |
efficientformerv2_s2.snap_dist_in1k | 82.128 | 95.902 | 12.71 | 224 |
efficientformer_l1.snap_dist_in1k | 80.496 | 94.984 | 12.29 | 224 |
efficientformerv2_s1.snap_dist_in1k | 79.698 | 94.698 | 6.19 | 224 |
efficientformerv2_s0.snap_dist_in1k | 76.026 | 92.77 | 3.6 | 224 |
Citation
@article{li2022rethinking,
title={Rethinking Vision Transformers for MobileNet Size and Speed},
author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian},
journal={arXiv preprint arXiv:2212.08059},
year={2022}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
- Downloads last month
- 518
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.