Model card for eca_botnext26ts_256.c1_in1k
A BotNet image classification model (with Efficient channel attention, based on ResNeXt architecture). Trained on ImageNet-1k in timm
by Ross Wightman.
NOTE: this model did not adhere to any specific paper configuration, it was tuned for reasonable training times and reduced frequency of self-attention blocks.
Recipe details:
- Based on ResNet Strikes Back
C
recipes - SGD (w/ Nesterov) optimizer and AGC (adaptive gradient clipping).
- Cosine LR schedule with warmup
This model architecture is implemented using timm
's flexible BYOBNet (Bring-Your-Own-Blocks Network).
BYOB (with BYOANet attention specific blocks) allows configuration of:
- block / stage layout
- block-type interleaving
- stem layout
- output stride (dilation)
- activation and norm layers
- channel and spatial / self-attention layers
...and also includes timm
features common to many other architectures, including:
- stochastic depth
- gradient checkpointing
- layer-wise LR decay
- per-stage feature extraction
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 10.6
- GMACs: 2.5
- Activations (M): 11.6
- Image size: 256 x 256
- Papers:
- Bottleneck Transformers for Visual Recognition: https://arxiv.org/abs/2101.11605
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eca_botnext26ts_256.c1_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eca_botnext26ts_256.c1_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 128, 128])
# torch.Size([1, 256, 64, 64])
# torch.Size([1, 512, 32, 32])
# torch.Size([1, 1024, 16, 16])
# torch.Size([1, 2048, 8, 8])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eca_botnext26ts_256.c1_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 8, 8) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Srinivas2021BottleneckTF,
title={Bottleneck Transformers for Visual Recognition},
author={A. Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and P. Abbeel and Ashish Vaswani},
journal={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021},
pages={16514-16524}
}
@inproceedings{wightman2021resnet,
title={ResNet strikes back: An improved training procedure in timm},
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
- Downloads last month
- 57,118