timm
/

Image Classification
timm
PyTorch
Safetensors
Edit model card

Model card for crossvit_tiny_240.in1k

A CrossViT image classification model. Trained on ImageNet-1k by paper authors.

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 7.0
    • GMACs: 1.6
    • Activations (M): 9.1
    • Image size: 240 x 240
  • Papers:
  • Dataset: ImageNet-1k
  • Original: https://github.com/IBM/CrossViT

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('crossvit_tiny_240.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'crossvit_tiny_240.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (torch.Size([1, 401, 96]), torch.Size([1, 197, 192])) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@inproceedings{
  chen2021crossvit,
  title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}},
  author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}
Downloads last month
518
Safetensors
Model size
7.01M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/crossvit_tiny_240.in1k