Model card for coat_lite_tiny.in1k
A CoaT (Co-Scale Conv-Attentional Transformer) image classification model. Trained on ImageNet-1k by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 5.7
- GMACs: 1.6
- Activations (M): 11.6
- Image size: 224 x 224
- Papers:
- Co-Scale Conv-Attentional Image Transformers: https://arxiv.org/abs/2104.06399
- Dataset: ImageNet-1k
- Original: https://github.com/mlpc-ucsd/CoaT
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('coat_lite_tiny.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'coat_lite_tiny.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 50, 320) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@InProceedings{Xu_2021_ICCV,
author = {Xu, Weijian and Xu, Yifan and Chang, Tyler and Tu, Zhuowen},
title = {Co-Scale Conv-Attentional Image Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {9981-9990}
}
- Downloads last month
- 379
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.