File size: 9,852 Bytes
54b3714
 
c7f670a
54b3714
c7f670a
a1d11a0
b22819d
c7f670a
 
 
 
 
 
 
 
 
 
 
 
 
a8b5565
54b3714
e251c35
5aad858
e251c35
43b757f
e251c35
5aad858
e251c35
9f16e66
 
5aad858
e251c35
5aad858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb410fb
5aad858
 
 
 
 
 
 
 
 
 
 
 
e251c35
5aad858
 
b6efaea
5aad858
9f16e66
 
 
 
5aad858
 
e251c35
54b3714
e251c35
54b3714
e0e1228
5aad858
 
 
43b757f
5aad858
e0e1228
54b3714
e0e1228
5aad858
e0e1228
54b3714
 
5aad858
 
 
 
54b3714
 
5aad858
54b3714
 
 
5aad858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb410fb
5aad858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6940d5f
 
5aad858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8281cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aad858
 
 
43b757f
54b3714
5aad858
eb410fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
datasets:
  - tiiuae/falcon-refinedweb
language:
  - en
inference: true
new_version: tiiuae/falcon-11B
widget:
  - text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
    example_title: "Abu Dhabi Trip"
  - text: "What's the Everett interpretation of quantum mechanics?"
    example_title: "Q/A: Quantum & Answers"
  - text: "Give me a list of the top 10 dive sites you would recommend around the world."
    example_title: "Diving Top 10"
  - text: "Can you tell me more about deep-water soloing?"
    example_title: "Extreme sports"
  - text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
    example_title: "Twitter Helper"
  - text: "What are the responsabilities of a Chief Llama Officer?"
    example_title: "Trendy Jobs"
license: apache-2.0
---

# ✨ Falcon-7B-Instruct

**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**

*Paper coming soon 😊.*

πŸ€— To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!

## Why use Falcon-7B-Instruct?

* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)). 

πŸ’¬ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b). 

πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**

For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). 

You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.


# Model Card for Falcon-7B-Instruct

## Model Details

### Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** Apache 2.0;
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Source

- **Paper:** *coming soon*.

## Uses

### Direct Use

Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. 

## Bias, Risks, and Limitations

Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.

## How to Get Started with the Model


```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

## Training Details

### Training Data

Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.

| **Data source**    | **Fraction** | **Tokens** | **Description**                       |
|--------------------|--------------|------------|-----------------------------------|
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65%          | 164M     | chat                 |
| [GPT4All](https://github.com/nomic-ai/gpt4all)              | 25%           | 62M       | instruct                                  |
| [GPTeacher](https://github.com/teknium1/GPTeacher)      | 5%           | 11M        | instruct |
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5%          | 13M     | massive web crawl                 |


The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.


## Evaluation

*Paper coming soon.*

See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.

Note that this model variant is not optimized for NLP benchmarks. 


## Technical Specifications 

For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Architecture and Objective

Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:

* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 32        |                                        |
| `d_model`          | 4544      | Increased to compensate for multiquery                                       |
| `head_dim`         | 64        | Reduced to optimise for FlashAttention |
| Vocabulary         | 65024     |                                        |
| Sequence length    | 2048      |                                        |

### Compute Infrastructure

#### Hardware

Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances. 

#### Software

Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)


## Citation

*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite: 
```
@article{falcon40b,
  title={{Falcon-40B}: an open large language model with state-of-the-art performance},
  author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
  year={2023}
}
```

To learn more about the pretraining dataset, see the πŸ““ [RefinedWeb paper](https://arxiv.org/abs/2306.01116).

```
@article{refinedweb,
  title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
  author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
  journal={arXiv preprint arXiv:2306.01116},
  eprint={2306.01116},
  eprinttype = {arXiv},
  url={https://arxiv.org/abs/2306.01116},
  year={2023}
}
```


## License

Falcon-7B-Instruct is made available under the Apache 2.0 license.

## Contact
falconllm@tii.ae