Edit model card

sparse_sparse_80_percent_pretraining_warmup_20K_0_2_steps_5k

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the openwebtext dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss
1.2964 0.02 50 1.2517
1.1086 0.05 100 1.0714
0.9727 0.07 150 0.9857
0.9326 0.1 200 0.9357
0.8944 0.12 250 0.8988
0.872 0.15 300 0.8700
0.8523 0.17 350 0.8516
0.8369 0.19 400 0.8358
0.8372 0.22 450 0.8226
0.8221 0.24 500 0.8116
0.8093 0.27 550 0.8020
0.804 0.29 600 0.7937
0.8111 0.32 650 0.7935
0.7949 0.34 700 0.7872
0.7947 0.36 750 0.7815
0.8045 0.39 800 0.7771
0.7706 0.41 850 0.7724
0.7669 0.44 900 0.7683
0.7691 0.46 950 0.7825
0.7737 0.48 1000 0.7779
0.7595 0.51 1050 0.7748
0.7672 0.53 1100 0.7709
0.7725 0.56 1150 0.7681
0.7551 0.58 1200 0.7658
0.8035 0.61 1250 0.8159
0.804 0.63 1300 0.8068
0.8074 0.65 1350 0.8016
0.7801 0.68 1400 0.7982
0.7842 0.7 1450 0.7951
0.7938 0.73 1500 0.7907
0.8625 0.75 1550 0.8568
0.8467 0.78 1600 0.8443
0.8216 0.8 1650 0.8379
0.8334 0.82 1700 0.8332
0.8287 0.85 1750 0.8292
0.8251 0.87 1800 0.8250
0.8969 0.9 1850 0.8790
0.8619 0.92 1900 0.8696
0.8566 0.95 1950 0.8645
0.8633 0.97 2000 0.8599
0.8622 0.99 2050 0.8558
0.8336 1.02 2100 0.8520
0.918 1.04 2150 0.9045
0.8755 1.07 2200 0.8960

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thrunlab/sparse_sparse_80_percent_pretraining_warmup_20K_0_2_steps_5k

Finetuned
(142)
this model

Dataset used to train thrunlab/sparse_sparse_80_percent_pretraining_warmup_20K_0_2_steps_5k