resnet-50-finetuned-omars6

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4990
  • Accuracy: 0.8328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3594 0.99 92 1.3630 0.5015
1.3214 2.0 185 1.3252 0.5714
1.2633 2.99 277 1.2851 0.6140
1.2693 4.0 370 1.2385 0.6626
1.1902 4.99 462 1.1837 0.6991
1.1421 6.0 555 1.1255 0.7568
1.1979 6.99 647 1.0094 0.8024
0.9431 8.0 740 0.9544 0.8237
0.9627 8.99 832 0.8864 0.8267
0.8556 10.0 925 0.8365 0.8328
0.7792 10.99 1017 0.7762 0.8359
0.7941 12.0 1110 0.7467 0.8359
0.8361 12.99 1202 0.7345 0.8237
0.7757 14.0 1295 0.7228 0.8146
0.6977 14.99 1387 0.6923 0.8267
0.6874 16.0 1480 0.6540 0.8146
0.6887 16.99 1572 0.6276 0.8298
0.7204 18.0 1665 0.5989 0.8267
0.8334 18.99 1757 0.6027 0.8237
0.7654 20.0 1850 0.5699 0.8511
0.7628 20.99 1942 0.5465 0.8389
0.7874 22.0 2035 0.5621 0.8298
0.8149 22.99 2127 0.5474 0.8298
0.7565 24.0 2220 0.5388 0.8480
0.7241 24.99 2312 0.5351 0.8267
0.7894 26.0 2405 0.5327 0.8389
0.7664 26.99 2497 0.5065 0.8450
0.6655 28.0 2590 0.5309 0.8359
0.607 28.99 2682 0.5061 0.8541
0.6462 29.84 2760 0.4990 0.8328

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
62
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results