Edit model card

resnet_50_base_aihub_model_py

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0987
  • Accuracy: 0.9681
  • Precision: 0.9712
  • Recall: 0.9624
  • F1: 0.9667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5577 1.0 149 0.4027 0.8453 0.8514 0.8415 0.8435
0.323 2.0 299 0.2346 0.9097 0.9208 0.8962 0.9074
0.2467 3.0 448 0.1786 0.9303 0.9465 0.9216 0.9326
0.1953 4.0 598 0.1266 0.9573 0.9591 0.9483 0.9535
0.1456 4.98 745 0.0987 0.9681 0.9712 0.9624 0.9667

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results