SentenceTransformer based on microsoft/deberta-v3-base
This is a sentence-transformers model finetuned from microsoft/deberta-v3-base on the negation-triplets, vitaminc-pairs, scitail-pairs-qa, scitail-pairs-pos, xsum-pairs, sciq_pairs, qasc_pairs, openbookqa_pairs, msmarco_pairs, nq_pairs, trivia_pairs, gooaq_pairs, paws-pos and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- negation-triplets
- vitaminc-pairs
- scitail-pairs-qa
- scitail-pairs-pos
- xsum-pairs
- sciq_pairs
- qasc_pairs
- openbookqa_pairs
- msmarco_pairs
- nq_pairs
- trivia_pairs
- gooaq_pairs
- paws-pos
- global_dataset
- Language: en
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8253 |
spearman_cosine | 0.8709 |
pearson_manhattan | 0.8653 |
spearman_manhattan | 0.8667 |
pearson_euclidean | 0.8671 |
spearman_euclidean | 0.8681 |
pearson_dot | 0.7827 |
spearman_dot | 0.7685 |
pearson_max | 0.8671 |
spearman_max | 0.8709 |
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 96per_device_eval_batch_size
: 68learning_rate
: 3.5e-05weight_decay
: 0.0005num_train_epochs
: 2lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 3.5, 'min_lr': 1.5e-05}warmup_ratio
: 0.33save_safetensors
: Falsefp16
: Truepush_to_hub
: Truehub_model_id
: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmphub_strategy
: all_checkpointsbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 96per_device_eval_batch_size
: 68per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3.5e-05weight_decay
: 0.0005adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 3.5, 'min_lr': 1.5e-05}warmup_ratio
: 0.33warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmphub_strategy
: all_checkpointshub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/DeBERTa3-base-STr-CosineWaves
Base model
microsoft/deberta-v3-baseDatasets used to train bobox/DeBERTa3-base-STr-CosineWaves
Evaluation results
- Pearson Cosine on sts testself-reported0.825
- Spearman Cosine on sts testself-reported0.871
- Pearson Manhattan on sts testself-reported0.865
- Spearman Manhattan on sts testself-reported0.867
- Pearson Euclidean on sts testself-reported0.867
- Spearman Euclidean on sts testself-reported0.868
- Pearson Dot on sts testself-reported0.783
- Spearman Dot on sts testself-reported0.769
- Pearson Max on sts testself-reported0.867
- Spearman Max on sts testself-reported0.871