Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Solar-10b-32k
bf16: auto
datasets:
- data_files:
  - ffdc9c6c7112acb8_train_data.json
  ds_type: json
  format: custom
  path: ffdc9c6c7112acb8_train_data.json
  type:
    field: null
    field_input: null
    field_instruction: instruction
    field_output: original_instruction
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 0
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda-4/21d2977d-424e-42af-8eac-4b17ebd241fe
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out/taopanda-4_113bcfa4-1f77-4d9a-972a-d332c234c9bd
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 40035
sequence_len: 4096
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-4_113bcfa4-1f77-4d9a-972a-d332c234c9bd
wandb_project: subnet56
wandb_runid: taopanda-4_113bcfa4-1f77-4d9a-972a-d332c234c9bd
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

Visualize in Weights & Biases

21d2977d-424e-42af-8eac-4b17ebd241fe

This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-32k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 40035
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.0001 0.9937 118 0.0008

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for taopanda-4/21d2977d-424e-42af-8eac-4b17ebd241fe

Adapter
(153)
this model