nucleotide-transformer-v2-50m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-v2-50m-multi-species on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4513
- F1 Score: 0.8606
- Precision: 0.7946
- Recall: 0.9386
- Accuracy: 0.8428
- Auc: 0.9312
- Prc: 0.9283
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.5632 | 0.0839 | 500 | 0.5934 | 0.7793 | 0.6466 | 0.9805 | 0.7129 | 0.8537 | 0.8277 |
0.4814 | 0.1679 | 1000 | 0.5125 | 0.7531 | 0.8452 | 0.6791 | 0.7698 | 0.8800 | 0.8632 |
0.4422 | 0.2518 | 1500 | 0.4025 | 0.8289 | 0.8203 | 0.8376 | 0.8212 | 0.9001 | 0.8868 |
0.4233 | 0.3358 | 2000 | 0.4586 | 0.8106 | 0.8643 | 0.7632 | 0.8156 | 0.9044 | 0.8958 |
0.4191 | 0.4197 | 2500 | 0.3875 | 0.8464 | 0.8236 | 0.8704 | 0.8366 | 0.9077 | 0.8961 |
0.4044 | 0.5037 | 3000 | 0.3871 | 0.8515 | 0.8122 | 0.8948 | 0.8387 | 0.9134 | 0.9067 |
0.4218 | 0.5876 | 3500 | 0.3585 | 0.8514 | 0.8380 | 0.8652 | 0.8439 | 0.9211 | 0.9158 |
0.3903 | 0.6716 | 4000 | 0.3746 | 0.8562 | 0.7974 | 0.9243 | 0.8395 | 0.9215 | 0.9164 |
0.384 | 0.7555 | 4500 | 0.3564 | 0.8527 | 0.8263 | 0.8808 | 0.8427 | 0.9206 | 0.9164 |
0.3728 | 0.8395 | 5000 | 0.3657 | 0.8508 | 0.8471 | 0.8545 | 0.8450 | 0.9226 | 0.9188 |
0.3862 | 0.9234 | 5500 | 0.3616 | 0.8619 | 0.8376 | 0.8876 | 0.8529 | 0.9281 | 0.9248 |
0.3829 | 1.0074 | 6000 | 0.3860 | 0.8595 | 0.8243 | 0.8977 | 0.8482 | 0.9282 | 0.9248 |
0.3051 | 1.0913 | 6500 | 0.4836 | 0.8485 | 0.7533 | 0.9711 | 0.8207 | 0.9287 | 0.9238 |
0.3191 | 1.1753 | 7000 | 0.4513 | 0.8606 | 0.7946 | 0.9386 | 0.8428 | 0.9312 | 0.9283 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
- Downloads last month
- 3