LLaMAntino-2-70b-hf-UltraChat-ITA ๐ฎ๐น ๐
Last Update: 02/02/2024
Model description
LLaMAntino-2-70b-hf-UltraChat-ITA is a Large Language Model (LLM) that is an instruction-tuned version of LLaMAntino-2-70b (an italian-adapted LLaMA 2 - 70B). This model aims to provide Italian NLP researchers with an improved model for italian dialogue use cases.
The model was trained using QLora and using as training data UltraChat translated to the italian language using Argos Translate. If you are interested in more details regarding the training procedure, you can find the code we used at the following link:
- Repository: https://github.com/swapUniba/LLaMAntino
NOTICE: the code has not been released yet, we apologize for the delay, it will be available asap!
- Developed by: Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro
- Funded by: PNRR project FAIR - Future AI Research
- Compute infrastructure: Leonardo supercomputer
- Model type: LLaMA-2
- Language(s) (NLP): Italian
- License: Llama 2 Community License
- Finetuned from model: swap-uniba/meta-llama/Llama-2-70b-hf
Prompt Format
This prompt format based on the LLaMA 2 prompt template adapted to the italian language was used:
" [INST] <<SYS>>\n" \
"Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. " \
"Rispondi sempre nel modo piรน utile possibile, pur essendo sicuro. " \
"Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \
"Assicurati che le tue risposte siano socialmente imparziali e positive. " \
"Se una domanda non ha senso o non รจ coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \
"Se non conosci la risposta a una domanda, non condividere informazioni false.\n" \
"<</SYS>>\n\n" \
f"{user_msg_1} [/INST] {model_answer_1} </s> <s> [INST] {user_msg_2} [/INST] {model_answer_2} </s> ... <s> [INST] {user_msg_N} [/INST] {model_answer_N} </s>"
We recommend using the same prompt in inference to obtain the best results!
How to Get Started with the Model
Below you can find an example of model usage:
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
model = "swap-uniba/LLaMAntino-2-70b-hf-UltraChat-ITA"
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.add_special_tokens({"pad_token":"<unk>"})
tokenizer.chat_template = "{% set ns = namespace(i=0) %}" \
"{% for message in messages %}" \
"{% if message['role'] == 'user' and ns.i == 0 %}" \
"{{ bos_token +' [INST] <<SYS>>\n' }}" \
"{{ 'Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. ' }}" \
"{{ 'Rispondi sempre nel modo piรน utile possibile, pur essendo sicuro. ' }}" \
"{{ 'Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. ' }}" \
"{{ 'Assicurati che le tue risposte siano socialmente imparziali e positive. ' }}" \
"{{ 'Se una domanda non ha senso o non รจ coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. ' }}" \
"{{ 'Se non conosci la risposta a una domanda, non condividere informazioni false.\n' }}" \
"{{ '<</SYS>>\n\n' }}" \
"{{ message['content'] + ' [/INST]' }}" \
"{% elif message['role'] == 'user' and ns.i != 0 %} " \
"{{ bos_token + ' [INST] ' + message['content'] + ' [/INST]' }}" \
"{% elif message['role'] == 'assistant' %}" \
"{{ ' ' + message['content'] + ' ' + eos_token + ' ' }}" \
"{% endif %}" \
"{% set ns.i = ns.i+1 %}" \
"{% endfor %}"
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
device_map='balanced',
use_flash_attention_2=True
)
pipe = transformers.pipeline(model=model,
device_map="balanced",
tokenizer=tokenizer,
return_full_text=False, # langchain expects the full text
task='text-generation',
max_new_tokens=512, # max number of tokens to generate in the output
temperature=0.7 #temperature
)
messages = [{"role": "user", "content": "Cosa sono i word embeddings?"}]
text = tokenizer.apply_chat_template(messages, tokenize=False)
sequences = pipe(text)
for seq in sequences:
print(f"{seq['generated_text']}")
If you are facing issues when loading the model, you can try to load it Quantized:
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True)
Note:
- The model loading strategy above requires the bitsandbytes and accelerate libraries
- The Tokenizer, by default, adds at the beginning of the prompt the '<BOS>' token. If that is not the case, add as a starting token the <s> string.
Evaluation
For a detailed comparison of model performance, check out the Leaderboard for Italian Language Models.
Here's a breakdown of the performance metrics:
Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
---|---|---|---|---|
Accuracy Normalized | 0.6566 | 0.5004 | 0.6084 | 0.588 |
Citation
If you use this model in your research, please cite the following:
@misc{basile2023llamantino,
title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language},
author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro},
year={2023},
eprint={2312.09993},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Notice: Llama 2 is licensed under the LLAMA 2 Community License, Copyright ยฉ Meta Platforms, Inc. All Rights Reserved. License
- Downloads last month
- 2,602