Edit model card

roberta-base-finetuned-ner

This model is a fine-tuned version of roberta-base on the PLOD-filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1148
  • Precision: 0.9645
  • Recall: 0.9583
  • F1: 0.9614
  • Accuracy: 0.9576

Model description

RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.

More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs.

Intended uses & limitations

More information needed

Training and evaluation data

The model is fine-tuned using PLOD-Filtered dataset. This dataset is used for training and evaluating the model. The PLOD Dataset is published at LREC 2022. The dataset can help build sequence labeling models for the task of Abbreviation Detection.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1179 1.99 7000 0.1130 0.9602 0.9517 0.9559 0.9522
0.0878 3.98 14000 0.1106 0.9647 0.9564 0.9606 0.9567
0.0724 5.96 21000 0.1149 0.9646 0.9582 0.9614 0.9576

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
19,820
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for surrey-nlp/roberta-base-finetuned-abbr

Finetuned
(1306)
this model
Finetunes
1 model

Dataset used to train surrey-nlp/roberta-base-finetuned-abbr

Evaluation results