albert-large-v2-finetuned-ner_with_callbacks

This model is a fine-tuned version of albert-large-v2 on the PLOD-unfiltered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1235
  • Precision: 0.9655
  • Recall: 0.9608
  • F1: 0.9632
  • Accuracy: 0.9589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1377 0.49 7000 0.1294 0.9563 0.9422 0.9492 0.9436
0.1244 0.98 14000 0.1165 0.9589 0.9504 0.9546 0.9499
0.107 1.48 21000 0.1140 0.9603 0.9509 0.9556 0.9511
0.1088 1.97 28000 0.1086 0.9613 0.9551 0.9582 0.9536
0.0918 2.46 35000 0.1059 0.9617 0.9582 0.9600 0.9556
0.0847 2.95 42000 0.1067 0.9620 0.9586 0.9603 0.9559
0.0734 3.44 49000 0.1188 0.9646 0.9588 0.9617 0.9574
0.0725 3.93 56000 0.1065 0.9660 0.9599 0.9630 0.9588
0.0547 4.43 63000 0.1273 0.9662 0.9602 0.9632 0.9590
0.0542 4.92 70000 0.1235 0.9655 0.9608 0.9632 0.9589
0.0374 5.41 77000 0.1401 0.9647 0.9613 0.9630 0.9586
0.0417 5.9 84000 0.1380 0.9641 0.9622 0.9632 0.9588

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
32
Safetensors
Model size
16.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for surrey-nlp/albert-large-v2-finetuned-abbDet

Finetuned
(3)
this model
Finetunes
2 models

Dataset used to train surrey-nlp/albert-large-v2-finetuned-abbDet

Evaluation results