vit-base-mnist
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:
- Loss: 0.0247
- Accuracy: 0.9949
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3215 | 1.0 | 6375 | 0.0630 | 0.9856 |
0.4689 | 2.0 | 12750 | 0.0377 | 0.9906 |
0.3258 | 3.0 | 19125 | 0.0364 | 0.9908 |
0.3094 | 4.0 | 25500 | 0.0269 | 0.9936 |
0.2981 | 5.0 | 31875 | 0.0247 | 0.9949 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 41
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for super-j/vit-base-mnist
Base model
google/vit-base-patch16-224-in21k