modeversion2_m7_e8

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1060
  • Accuracy: 0.9761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0231 0.06 100 3.8568 0.1883
3.3863 0.12 200 3.2510 0.2596
2.6187 0.18 300 2.6243 0.3882
2.3097 0.23 400 2.2189 0.4527
1.9016 0.29 500 1.9495 0.5244
1.7478 0.35 600 1.6609 0.6091
1.2345 0.41 700 1.4335 0.6426
1.4129 0.47 800 1.3001 0.6752
1.1722 0.53 900 1.2030 0.6785
1.0808 0.59 1000 1.0051 0.7273
0.8814 0.64 1100 1.0715 0.7063
0.9831 0.7 1200 0.9283 0.7334
0.8118 0.76 1300 0.8525 0.7631
0.7203 0.82 1400 0.7849 0.7756
0.8881 0.88 1500 0.8786 0.7487
0.6407 0.94 1600 0.6896 0.8000
0.7574 1.0 1700 0.7314 0.7754
0.6063 1.06 1800 0.6312 0.8068
0.4797 1.11 1900 0.5792 0.8296
0.4973 1.17 2000 0.5846 0.8221
0.4432 1.23 2100 0.7057 0.7905
0.5518 1.29 2200 0.5621 0.8304
0.3256 1.35 2300 0.5890 0.8143
0.4284 1.41 2400 0.5204 0.8485
0.3702 1.47 2500 0.5699 0.8256
0.2858 1.52 2600 0.5815 0.8287
0.3706 1.58 2700 0.4615 0.8571
0.3484 1.64 2800 0.4812 0.8518
0.2865 1.7 2900 0.4285 0.8638
0.4474 1.76 3000 0.5217 0.8377
0.2101 1.82 3100 0.4478 0.8589
0.3545 1.88 3200 0.4444 0.8612
0.2728 1.93 3300 0.4213 0.8645
0.3525 1.99 3400 0.3551 0.8848
0.0936 2.05 3500 0.4074 0.8748
0.2118 2.11 3600 0.4089 0.8812
0.2744 2.17 3700 0.3534 0.8894
0.211 2.23 3800 0.4422 0.8599
0.1684 2.29 3900 0.3705 0.8858
0.1885 2.34 4000 0.3651 0.8862
0.249 2.4 4100 0.4234 0.8687
0.1485 2.46 4200 0.3784 0.8798
0.1188 2.52 4300 0.3589 0.8873
0.1274 2.58 4400 0.3570 0.8917
0.2206 2.64 4500 0.3377 0.8920
0.1287 2.7 4600 0.3170 0.9023
0.1805 2.75 4700 0.3469 0.8934
0.1505 2.81 4800 0.4258 0.8757
0.1592 2.87 4900 0.3415 0.8948
0.1297 2.93 5000 0.3168 0.9028
0.1284 2.99 5100 0.3060 0.9089
0.0833 3.05 5200 0.2610 0.9207
0.0334 3.11 5300 0.2766 0.9197
0.0847 3.17 5400 0.3366 0.9016
0.1112 3.22 5500 0.3098 0.9079
0.0477 3.28 5600 0.3385 0.9041
0.0419 3.34 5700 0.2944 0.9139
0.0827 3.4 5800 0.2715 0.9239
0.0659 3.46 5900 0.2695 0.9230
0.0244 3.52 6000 0.3050 0.9147
0.0883 3.58 6100 0.2862 0.9203
0.0527 3.63 6200 0.2383 0.9319
0.0828 3.69 6300 0.2984 0.9182
0.0678 3.75 6400 0.2135 0.9436
0.0492 3.81 6500 0.2605 0.9296
0.0374 3.87 6600 0.2192 0.9380
0.1846 3.93 6700 0.2804 0.9187
0.0557 3.99 6800 0.2599 0.9253
0.0127 4.04 6900 0.2412 0.9336
0.0203 4.1 7000 0.2214 0.9415
0.0272 4.16 7100 0.2322 0.9356
0.066 4.22 7200 0.2643 0.9325
0.0628 4.28 7300 0.2170 0.9406
0.0108 4.34 7400 0.2388 0.9405
0.026 4.4 7500 0.2533 0.9372
0.0401 4.45 7600 0.2407 0.9358
0.0493 4.51 7700 0.2213 0.9415
0.0951 4.57 7800 0.3016 0.9237
0.0017 4.63 7900 0.2183 0.9448
0.0561 4.69 8000 0.1962 0.9492
0.0063 4.75 8100 0.1868 0.9522
0.0054 4.81 8200 0.2068 0.9459
0.0519 4.87 8300 0.2141 0.9429
0.027 4.92 8400 0.2138 0.9438
0.0034 4.98 8500 0.1774 0.9529
0.0096 5.04 8600 0.1778 0.9512
0.0011 5.1 8700 0.1854 0.9512
0.0195 5.16 8800 0.1914 0.9483
0.0245 5.22 8900 0.2156 0.9471
0.0055 5.28 9000 0.1640 0.9574
0.0166 5.33 9100 0.1770 0.9568
0.0217 5.39 9200 0.2011 0.9479
0.0017 5.45 9300 0.2210 0.9462
0.0161 5.51 9400 0.1510 0.9621
0.0193 5.57 9500 0.1643 0.9586
0.0121 5.63 9600 0.1716 0.9535
0.0146 5.69 9700 0.1720 0.9554
0.0071 5.74 9800 0.1831 0.9541
0.0018 5.8 9900 0.2076 0.9485
0.0007 5.86 10000 0.1636 0.9599
0.0005 5.92 10100 0.1625 0.9602
0.0277 5.98 10200 0.1874 0.9546
0.0005 6.04 10300 0.1790 0.9579
0.0012 6.1 10400 0.1840 0.9544
0.0431 6.15 10500 0.1571 0.9628
0.0332 6.21 10600 0.1599 0.9591
0.0014 6.27 10700 0.1493 0.9632
0.0014 6.33 10800 0.1366 0.9661
0.0006 6.39 10900 0.1582 0.9609
0.0005 6.45 11000 0.1704 0.9589
0.0004 6.51 11100 0.1376 0.9671
0.0755 6.57 11200 0.1375 0.9654
0.0002 6.62 11300 0.1361 0.9661
0.0006 6.68 11400 0.1323 0.9675
0.0009 6.74 11500 0.1239 0.9692
0.0004 6.8 11600 0.1514 0.9631
0.0002 6.86 11700 0.1386 0.9664
0.0004 6.92 11800 0.1368 0.9659
0.0004 6.98 11900 0.1276 0.9684
0.0002 7.03 12000 0.1171 0.9712
0.0002 7.09 12100 0.1142 0.9711
0.0001 7.15 12200 0.1183 0.9727
0.0002 7.21 12300 0.1167 0.9732
0.0002 7.27 12400 0.1143 0.9737
0.0001 7.33 12500 0.1129 0.9737
0.0002 7.39 12600 0.1116 0.9742
0.0002 7.44 12700 0.1126 0.9745
0.0002 7.5 12800 0.1111 0.9748
0.0002 7.56 12900 0.1102 0.9747
0.0001 7.62 13000 0.1094 0.9747
0.0001 7.68 13100 0.1086 0.9742
0.0001 7.74 13200 0.1079 0.9748
0.0002 7.8 13300 0.1062 0.9754
0.0002 7.85 13400 0.1068 0.9757
0.0001 7.91 13500 0.1061 0.9762
0.0001 7.97 13600 0.1060 0.9761

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.