File size: 4,089 Bytes
82fba96 d857b0e c78a6e5 d857b0e 4cd083a e2bb9aa 5345544 898f8f8 5345544 fa763bf 5345544 1b583d6 5345544 c865e38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.2-3B-Instruct
pipeline_tag: text-generation
tags:
- text-generation-inference
- unsloth
- trl
- sft
- math
- code
datasets:
- jeggers/competition_math
library_name: transformers
model-index:
- name: Komodo-Llama-3.2-3B-v2-fp16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 63.41
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 20.2
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.27
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.69
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.37
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.58
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16
name: Open LLM Leaderboard
---
![Komodo-Logo](Komodo-Logo.jpg)
This version of Komodo is a Llama-3.2-3B-Instruct finetuned model on jeggers/competition_math dataset to increase math performance of the base model.
This model is 4bit-quantized. You should import it 8bit if you want to use 3B parameters!
Make sure you installed 'bitsandbytes' library before import.
Finetune system prompt:
```
You are a highly intelligent and accurate mathematical assistant.
You will solve mathematical problems step by step, explain your reasoning clearly, and provide concise, correct answers.
When the solution requires multiple steps, detail each step systematically.
```
You can use ChatML format!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_suayptalha__Komodo-Llama-3.2-3B-v2-fp16)
| Metric |Value|
|-------------------|----:|
|Avg. |19.59|
|IFEval (0-Shot) |63.41|
|BBH (3-Shot) |20.20|
|MATH Lvl 5 (4-Shot)| 6.27|
|GPQA (0-shot) | 3.69|
|MuSR (0-shot) | 3.37|
|MMLU-PRO (5-shot) |20.58| |