See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
data_seed: 42
seed: 42
datasets:
- path: data/templatefree_isaf_press_releases_ft_train.jsonl
type: input_output
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./outputs/llama3/lora-out-templatefree
hub_model_id: strickvl/isafpr-llama3-lora-templatefree
sequence_len: 1024
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
pad_token: <|end_of_text|>
isafpr-llama3-lora-templatefree
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0428
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1433 | 0.0071 | 1 | 2.1450 |
0.0712 | 0.25 | 35 | 0.0669 |
0.0549 | 0.5 | 70 | 0.0517 |
0.0585 | 0.75 | 105 | 0.0479 |
0.0452 | 1.0 | 140 | 0.0482 |
0.0244 | 1.2339 | 175 | 0.0473 |
0.0287 | 1.4839 | 210 | 0.0447 |
0.017 | 1.7339 | 245 | 0.0417 |
0.0107 | 1.9839 | 280 | 0.0408 |
0.0151 | 2.2143 | 315 | 0.0414 |
0.0134 | 2.4643 | 350 | 0.0415 |
0.0067 | 2.7143 | 385 | 0.0407 |
0.0089 | 2.9643 | 420 | 0.0399 |
0.0092 | 3.1929 | 455 | 0.0421 |
0.007 | 3.4429 | 490 | 0.0429 |
0.0065 | 3.6929 | 525 | 0.0428 |
0.0125 | 3.9429 | 560 | 0.0428 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for strickvl/isafpr-llama3-lora-templatefree
Base model
meta-llama/Meta-Llama-3-8B