readme: add initial version

#1
by stefan-it - opened
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: hmteams/teams-base-historic-multilingual-discriminator
9
+ widget:
10
+ - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι .
11
+ ---
12
+
13
+ # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022)
14
+
15
+ This Flair model was fine-tuned on the
16
+ [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
17
+ NER Dataset using hmTEAMS as backbone LM.
18
+
19
+ The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
20
+ and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
21
+ project.
22
+
23
+ The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
24
+
25
+ # Results
26
+
27
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
28
+
29
+ * Batch Sizes: `[8, 4]`
30
+ * Learning Rates: `[0.00015, 0.00016]`
31
+
32
+ And report micro F1-score on development set:
33
+
34
+ | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
35
+ |-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
36
+ | bs4-e10-lr0.00016 | [0.842][1] | [0.8548][2] | [0.8407][3] | [0.8431][4] | [0.8443][5] | 84.5 ± 0.51 |
37
+ | bs4-e10-lr0.00015 | [0.8376][6] | [0.8343][7] | [0.8495][8] | [0.8394][9] | [0.837][10] | 83.96 ± 0.52 |
38
+ | bs8-e10-lr0.00015 | [0.8172][11] | [0.8242][12] | [0.8217][13] | [0.8367][14] | [0.8323][15] | 82.64 ± 0.71 |
39
+ | bs8-e10-lr0.00016 | [0.8178][16] | [0.8205][17] | [0.8126][18] | [0.8339][19] | [0.8264][20] | 82.22 ± 0.73 |
40
+
41
+ [1]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
42
+ [2]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
43
+ [3]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
44
+ [4]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
45
+ [5]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
46
+ [6]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
47
+ [7]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
48
+ [8]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
49
+ [9]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
50
+ [10]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
51
+ [11]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
52
+ [12]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
53
+ [13]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
54
+ [14]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
55
+ [15]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
56
+ [16]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
57
+ [17]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
58
+ [18]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
59
+ [19]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
60
+ [20]: https://hf.co/hmbench/hmbench-ajmc-en-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
61
+
62
+ The [training log](training.log) and TensorBoard logs are also uploaded to the model hub.
63
+
64
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
65
+
66
+ # Acknowledgements
67
+
68
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
69
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
70
+
71
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
72
+ Many Thanks for providing access to the TPUs ❤️