File size: 3,031 Bytes
f0b4587
 
010bd27
 
 
 
 
f0b4587
010bd27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7a39d
010bd27
 
 
 
acf884a
010bd27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: mit
pipeline_tag: text-generation
tags:
- text-generation-inference
language:
- en
---

# phi-3-mini-128k-instruct-int4

- Orginal model : [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
- Quantized using [intel/auto-round](https://github.com/intel/auto-round) 

## Description 

**Phi-3-mini-128k-instruct-int4** is an int4 model with group_size 128 of the [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct).

The above model was quantized using AutoRound(Advanced Weight-Only Quantization Algorithm for LLMs) released by [intel](https://github.com/intel).

you can find out more in detail through the the [GitHub Repository](https://github.com/intel/auto-round). 


## Training details


### Cloning a repository(AutoRound)  

```
git clone https://github.com/intel/auto-round
```

### Enter into the examples/language-modeling folder 

```
cd auto-round/examples/language-modeling
pip install -r requirements.txt
```

### Install FlashAttention-2  

```
pip install flash_attn==2.5.8
```


Here's an simplified code for quantization. In order to save memory in quantization, we set the batch size to 1.

```
python main.py \
  --model_name "microsoft/Phi-3-mini-128k-instruct" \
  --bits 4 \
  --group_size 128 \
  --train_bs 1 \
  --gradient_accumulate_steps 8 \
  --deployment_device 'gpu' \
  --output_dir "./save_ckpt" 
```


## Model inference


### Install the necessary packages 

```
pip install auto_gptq
pip install optimum
pip install -U accelerate bitsandbytes datasets peft transformers
```

### Example codes 

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

torch.random.manual_seed(0)

model = AutoModelForCausalLM.from_pretrained(
    "ssuncheol/phi-3-mini-128k-instruct-int4", 
    device_map="cuda", 
    torch_dtype="auto", 
    trust_remote_code=True, 
)
tokenizer = AutoTokenizer.from_pretrained("ssuncheol/phi-3-mini-128k-instruct-int4")

messages = [
    {"role": "system", "content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user."},
    {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
    {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
    {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}

output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```


## License
The model is licensed under the MIT license.