model2024-05-20
This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0759
- Accuracy: 0.9688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1694 | 1.0 | 321 | 0.1613 | 0.9408 |
0.1271 | 2.0 | 642 | 0.1178 | 0.9530 |
0.0922 | 3.0 | 963 | 0.1076 | 0.9568 |
0.0788 | 4.0 | 1284 | 0.0731 | 0.9691 |
0.0766 | 5.0 | 1605 | 0.0759 | 0.9688 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.