File size: 34,348 Bytes
1f69d12
 
 
 
 
 
1e84a23
4447f4b
8bc0027
d5b6416
eb99dff
1f69d12
d5b6416
f3c3d2c
71dd276
d5b6416
b6ed110
d5b6416
 
1e84a23
187f7c2
1e84a23
 
 
2368603
d5b6416
c020875
4102fcc
b569ed6
d5b6416
1e84a23
1f69d12
 
 
6d6e2ca
791dadb
1e84a23
fe341fa
d5b6416
fe341fa
09246a5
1d1c056
d5b6416
ca9babb
fe341fa
aad99b6
518c095
09246a5
a85e6d0
4949401
fad27c0
 
 
1e84a23
916d4aa
fa201f9
6d6e2ca
 
 
fbf41e0
 
 
c4addd7
 
b3e2f4e
c4addd7
 
4447f4b
 
c4addd7
3c6e2f7
fa201f9
 
 
 
 
 
9d63140
c4addd7
f7bc685
c4addd7
f7bc685
cb527d3
1e84a23
fbf41e0
c020875
92d49fd
fbf41e0
f7bc685
e8fc97a
045d5d8
 
fad27c0
045d5d8
fbf41e0
045d5d8
 
fbf41e0
045d5d8
 
e8fc97a
 
1f69d12
c949fc8
1bf9365
fbf41e0
 
5948f20
e5b0200
958ab92
 
fbf41e0
 
1e84a23
3c6e2f7
 
 
fad27c0
f3c3d2c
3c6e2f7
fbf41e0
 
3c6e2f7
 
 
0892c44
3c6e2f7
fbf41e0
fad27c0
e8fc97a
 
 
1e84a23
e71fd0e
187f7c2
 
 
 
 
 
e71fd0e
1e84a23
 
b3e2f4e
 
69be8e7
4102fcc
1e84a23
187f7c2
 
 
 
 
 
 
1e84a23
8056fe2
bf6f415
7abf202
 
 
1e84a23
 
4949401
16f6834
c020875
4e2b9ec
127cbeb
6b634c6
 
 
 
4e2b9ec
 
16f6834
ec1d849
fad27c0
ec1d849
3c6e2f7
1e84a23
3c6e2f7
 
ce36905
 
 
1e84a23
ec1d849
 
fab5085
 
ec1d849
3c6e2f7
ce36905
ca5b10b
1e84a23
3c6e2f7
ce36905
fbf41e0
ebafd1e
ad4c22c
4949401
916d4aa
ad4c22c
 
3c6e2f7
e71fd0e
3d8ed0a
e27ca0d
69be8e7
3d8ed0a
1e84a23
4102fcc
fad27c0
c1af67d
 
4102fcc
 
7765557
fad27c0
4102fcc
4949401
7765557
22fb2b0
b3e2f4e
fad27c0
fbf41e0
dd03b20
1e84a23
24c5a94
fbf41e0
1e84a23
c687d5c
fad27c0
b3e2f4e
fbf41e0
 
dd03b20
c687d5c
fbf41e0
c687d5c
 
 
 
9c91aea
08d4918
045d5d8
 
c687d5c
 
 
 
886f1c0
 
 
fad27c0
f2d97eb
1e84a23
 
6ab5895
 
 
9c803f2
1e84a23
 
0ada058
8bc0027
e16e9e4
1e84a23
 
 
fe341fa
f1096b2
3974d72
1e84a23
0ada058
16f6834
c020875
ca9babb
1d1c056
 
 
 
1e84a23
 
 
 
f06e2d5
c020875
fad27c0
8bc0027
69ff781
 
c020875
fad27c0
 
4102fcc
fad27c0
4102fcc
1e84a23
37e13f8
 
 
 
1e84a23
fad27c0
4102fcc
 
f01f322
fad27c0
4102fcc
 
1e84a23
 
c020875
1e84a23
16f6834
 
 
0ada058
b3e2f4e
1e84a23
 
f1c63e2
1e84a23
f1c63e2
1e84a23
 
55ca5c7
 
 
1e84a23
 
 
 
a21bd06
8056fe2
a21bd06
ca9babb
fad27c0
 
69be8e7
 
1e84a23
 
c020875
1e84a23
 
3974d72
c020875
 
1e84a23
ebafd1e
4102fcc
3974d72
1e84a23
 
fad27c0
4102fcc
c020875
4102fcc
f3c3d2c
4102fcc
 
 
9c91aea
 
b6ed110
045d5d8
f3c3d2c
 
045d5d8
fbf41e0
 
e8fc97a
1e84a23
 
6d6e2ca
1e84a23
045d5d8
1e84a23
 
c020875
fad27c0
4102fcc
ec1d849
4102fcc
fbf41e0
e8fc97a
1f69d12
 
 
 
 
 
 
 
 
 
 
 
7765557
7f8471e
 
ca5b10b
7f8471e
ca290dc
fe341fa
ca290dc
fe341fa
ca290dc
 
045d5d8
 
fbf41e0
e8fc97a
7f8471e
 
0ada058
7f8471e
 
1bf9365
4102fcc
 
fbf41e0
ca5b10b
 
 
aad99b6
fab5085
 
ec1d849
fbf41e0
4102fcc
 
 
c020875
4102fcc
fbf41e0
e8fc97a
6d6e2ca
4102fcc
e5b0200
1e84a23
6d6e2ca
fad27c0
f3c3d2c
9c91aea
c4addd7
fbf41e0
f639e14
fbf41e0
e8fc97a
f3c3d2c
fbf41e0
f3c3d2c
 
f79d747
1f69d12
 
 
 
 
 
 
 
 
 
f3c3d2c
 
 
 
 
fbf41e0
 
 
 
1bf9365
fad27c0
1e84a23
 
 
 
fbf41e0
1e84a23
3c6e2f7
 
4695ca8
fdc2239
de19165
8056fe2
69ff781
1e84a23
ebafd1e
1e84a23
 
9fdb0fb
1e84a23
 
 
f06e2d5
1e84a23
2d396be
7e161d9
8056fe2
3edc38f
916d4aa
c4addd7
efa4946
c4addd7
 
69be8e7
6b634c6
9c803f2
e8fc97a
 
 
 
fad27c0
fbf41e0
bfb2276
 
 
 
fad27c0
 
 
4102fcc
ef0b5c9
3c6e2f7
ebafd1e
518c095
e8fc97a
ebafd1e
 
379396e
f7bc685
b3e2f4e
ebafd1e
 
281d78c
ebafd1e
 
 
c4addd7
f7bc685
3c6e2f7
c020875
c67e722
fad27c0
 
b3e2f4e
fad27c0
 
e8810a5
fad27c0
10d56d7
c020875
1e84a23
 
045d5d8
fad27c0
 
1e84a23
 
 
8056fe2
c1a2a7a
08e97a2
f1c63e2
8056fe2
f1c63e2
 
 
0ada058
8056fe2
 
 
 
 
 
f1c63e2
8056fe2
 
f1096b2
 
8056fe2
 
 
 
08e97a2
 
 
f1c63e2
8056fe2
4102fcc
fa201f9
 
fad27c0
1e84a23
8056fe2
f7bc685
1e84a23
 
 
f1c63e2
1c8464e
1e84a23
 
 
 
 
ae4261c
1e84a23
 
 
 
 
 
 
f1c63e2
1e84a23
 
8056fe2
 
1e84a23
 
 
 
e32abb5
1e84a23
e32abb5
8056fe2
e32abb5
 
 
1e84a23
 
e8fc97a
1e84a23
 
e32abb5
1e84a23
e32abb5
c1a2a7a
00917a6
 
bfb2276
 
fbf41e0
 
 
 
 
 
 
 
bfb2276
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""Train a YOLOv5 model on a custom dataset

Usage:
    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""

import argparse
import logging
import math
import os
import random
import sys
import time
import warnings
from copy import deepcopy
from pathlib import Path
from threading import Thread

import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path

import test  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
    strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
    check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness

logger = logging.getLogger(__name__)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))


def train(hyp,  # path/to/hyp.yaml or hyp dictionary
          opt,
          device,
          ):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
        opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.notest, opt.nosave, opt.workers

    # Directories
    save_dir = Path(save_dir)
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict

    # Loggers
    loggers = {'wandb': None, 'tb': None}  # loggers dict
    if RANK in [-1, 0]:
        # TensorBoard
        if not evolve:
            prefix = colorstr('tensorboard: ')
            logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
            loggers['tb'] = SummaryWriter(str(save_dir))

        # W&B
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        run_id = run_id if opt.resume else None  # start fresh run if transfer learning
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        if loggers['wandb']:
            data_dict = wandb_logger.data_dict
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming

    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data)  # check
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
                        'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
                                            workers=workers,
                                            image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)

    # Process 0
    if RANK in [-1, 0]:
        testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls,
                                       hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1,
                                       workers=workers,
                                       pad=0.5, prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if loggers['tb']:
                    loggers['tb'].add_histogram('classes', c, 0)  # TensorBoard

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if RANK != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Print
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    if loggers['tb'] and ni == 0:  # TensorBoard
                        with warnings.catch_warnings():
                            warnings.simplefilter('ignore')  # suppress jit trace warning
                            loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
                elif plots and ni == 10 and loggers['wandb']:
                    wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        # DDP process 0 or single-GPU
        if RANK in [-1, 0]:
            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, _ = test.run(data_dict,
                                            batch_size=batch_size // WORLD_SIZE * 2,
                                            imgsz=imgsz_test,
                                            model=ema.ema,
                                            single_cls=single_cls,
                                            dataloader=testloader,
                                            save_dir=save_dir,
                                            save_json=is_coco and final_epoch,
                                            verbose=nc < 50 and final_epoch,
                                            plots=plots and final_epoch,
                                            wandb_logger=wandb_logger,
                                            compute_loss=compute_loss)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss

            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if loggers['tb']:
                    loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoard
                if loggers['wandb']:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(de_parallel(model)).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if loggers['wandb']:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if loggers['wandb']:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})

        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = test.run(data_dict,
                                             batch_size=batch_size // WORLD_SIZE * 2,
                                             imgsz=imgsz_test,
                                             conf_thres=0.001,
                                             iou_thres=0.7,
                                             model=attempt_load(m, device).half(),
                                             single_cls=single_cls,
                                             dataloader=testloader,
                                             save_dir=save_dir,
                                             save_json=True,
                                             plots=False)

            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            if loggers['wandb']:  # Log the stripped model
                loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
                                              name='run_' + wandb_logger.wandb_run.id + '_model',
                                              aliases=['latest', 'best', 'stripped'])
        wandb_logger.finish_run()

    torch.cuda.empty_cache()
    return results


def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--entity', default=None, help='W&B entity')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--linear-lr', action='store_true', help='linear LR')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
    parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
    parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    return opt


def main(opt):
    set_logging(RANK)
    if RANK in [-1, 0]:
        print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
        check_git_status()
        check_requirements(exclude=['thop'])

    # Resume
    wandb_run = check_wandb_resume(opt)
    if opt.resume and not wandb_run:  # resume an interrupted run
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        from datetime import timedelta
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
        assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
        assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device)
        if WORLD_SIZE > 1 and RANK == 0:
            _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0)}  # image mixup (probability)

        with open(opt.hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
        assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')


def run(**kwargs):
    # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)