[WIP] Feature/ddp fixed (#401)
Browse files* Squashed commit of the following:
commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 17:33:38 2020 +0700
Adding world_size
Reduce calls to torch.distributed. For use in create_dataloader.
commit e742dd9619d29306c7541821238d3d7cddcdc508
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 15:38:48 2020 +0800
Make SyncBN a choice
commit e90d4004387e6103fecad745f8cbc2edc918e906
Merge: 5bf8beb cd90360
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Tue Jul 14 15:32:10 2020 +0800
Merge pull request #6 from NanoCode012/patch-5
Update train.py
commit cd9036017e7f8bd519a8b62adab0f47ea67f4962
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 13:39:29 2020 +0700
Update train.py
Remove redundant `opt.` prefix.
commit 5bf8bebe8873afb18b762fe1f409aca116fac073
Merge: c9558a9 a1c8406
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 14:09:51 2020 +0800
Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed
commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 13:51:34 2020 +0800
Add device allocation for loss compute
commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:16:27 2020 +0800
Revert drop_last
commit 1dabe33a5a223b758cc761fc8741c6224205a34b
Merge: a1ce9b1 4b8450b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:15:49 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:15:21 2020 +0800
fix lr warning
commit 4b8450b46db76e5e58cd95df965d4736077cfb0e
Merge: b9a50ae 02c63ef
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Wed Jul 8 21:24:24 2020 +0800
Merge pull request #4 from NanoCode012/patch-4
Add drop_last for multi gpu
commit 02c63ef81cf98b28b10344fe2cce08a03b143941
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Wed Jul 8 10:08:30 2020 +0700
Add drop_last for multi gpu
commit b9a50aed48ab1536f94d49269977e2accd67748f
Merge: ec2dc6c 121d90b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 7 19:48:04 2020 +0800
Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed
commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d
Merge: d0326e3 82a6182
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 7 19:34:31 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit d0326e398dfeeeac611ccc64198d4fe91b7aa969
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 7 19:31:24 2020 +0800
Add SyncBN
commit 82a6182b3ad0689a4432b631b438004e5acb3b74
Merge: 96fa40a 050b2a5
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Tue Jul 7 19:21:01 2020 +0800
Merge pull request #1 from NanoCode012/patch-2
Convert BatchNorm to SyncBatchNorm
commit 050b2a5a79a89c9405854d439a1f70f892139b1c
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 7 12:38:14 2020 +0700
Add cleanup for process_group
commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 7 12:07:40 2020 +0700
Remove apex.parallel. Use torch.nn.parallel
For future compatibility
commit 77c8e27e603bea9a69e7647587ca8d509dc1990d
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 7 01:54:39 2020 +0700
Convert BatchNorm to SyncBatchNorm
commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Mon Jul 6 21:53:56 2020 +0800
Fix the datset inconsistency problem
commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Mon Jul 6 11:34:03 2020 +0800
Add loss multiplication to preserver the single-process performance
commit e83805563065ffd2e38f85abe008fc662cc17909
Merge: 625bb49 3bdea3f
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Fri Jul 3 20:56:30 2020 +0800
Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed
commit 625bb49f4e52d781143fea0af36d14e5be8b040c
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 2 22:45:15 2020 +0800
DDP established
* Squashed commit of the following:
commit 94147314e559a6bdd13cb9de62490d385c27596f
Merge: 65157e2 37acbdc
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 16 14:00:17 2020 +0800
Merge branch 'master' of https://github.com/ultralytics/yolov4 into feature/DDP_fixed
commit 37acbdc0b6ef8c3343560834b914c83bbb0abbd1
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date: Wed Jul 15 20:03:41 2020 -0700
update test.py --save-txt
commit b8c2da4a0d6880afd7857207340706666071145b
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date: Wed Jul 15 20:00:48 2020 -0700
update test.py --save-txt
commit 65157e2fc97d371bc576e18b424e130eb3026917
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Wed Jul 15 16:44:13 2020 +0800
Revert the README.md removal
commit 1c802bfa503623661d8617ca3f259835d27c5345
Merge: cd55b44 0f3b8bb
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Wed Jul 15 16:43:38 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit cd55b445c4dcd8003ff4b0b46b64adf7c16e5ce7
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Wed Jul 15 16:42:33 2020 +0800
fix the DDP performance deterioration bug.
commit 0f3b8bb1fae5885474ba861bbbd1924fb622ee93
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date: Wed Jul 15 00:28:53 2020 -0700
Delete README.md
commit f5921ba1e35475f24b062456a890238cb7a3cf94
Merge: 85ab2f3 bd3fdbb
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Wed Jul 15 11:20:17 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit bd3fdbbf1b08ef87931eef49fa8340621caa7e87
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date: Tue Jul 14 18:38:20 2020 -0700
Update README.md
commit c1a97a7767ccb2aa9afc7a5e72fd159e7c62ec02
Merge: 2bf86b8 f796708
Author: Glenn Jocher <glenn.jocher@ultralytics.com>
Date: Tue Jul 14 18:36:53 2020 -0700
Merge branch 'master' into feature/DDP_fixed
commit 2bf86b892fa2fd712f6530903a0d9b8533d7447a
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 22:18:15 2020 +0700
Fixed world_size not found when called from test
commit 85ab2f38cdda28b61ad15a3a5a14c3aafb620dc8
Merge: 5a19011 c8357ad
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 22:19:58 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit 5a19011949398d06e744d8d5521ab4e6dfa06ab7
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 22:19:15 2020 +0800
Add assertion for <=2 gpus DDP
commit c8357ad5b15a0e6aeef4d7fe67ca9637f7322a4d
Merge: e742dd9 787582f
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Tue Jul 14 22:10:02 2020 +0800
Merge pull request #8 from MagicFrogSJTU/NanoCode012-patch-1
Modify number of dataloaders' workers
commit 787582f97251834f955ef05a77072b8c673a8397
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 20:38:58 2020 +0700
Fixed issue with single gpu not having world_size
commit 63648925288d63a21174a4dd28f92dbfebfeb75a
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 19:16:15 2020 +0700
Add assert message for clarification
Clarify why assertion was thrown to users
commit 69364d6050e048d0d8834e0f30ce84da3f6a13f3
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 17:36:48 2020 +0700
Changed number of workers check
commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 17:33:38 2020 +0700
Adding world_size
Reduce calls to torch.distributed. For use in create_dataloader.
commit e742dd9619d29306c7541821238d3d7cddcdc508
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 15:38:48 2020 +0800
Make SyncBN a choice
commit e90d4004387e6103fecad745f8cbc2edc918e906
Merge: 5bf8beb cd90360
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Tue Jul 14 15:32:10 2020 +0800
Merge pull request #6 from NanoCode012/patch-5
Update train.py
commit cd9036017e7f8bd519a8b62adab0f47ea67f4962
Author: NanoCode012 <kevinvong@rocketmail.com>
Date: Tue Jul 14 13:39:29 2020 +0700
Update train.py
Remove redundant `opt.` prefix.
commit 5bf8bebe8873afb18b762fe1f409aca116fac073
Merge: c9558a9 a1c8406
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 14:09:51 2020 +0800
Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed
commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Tue Jul 14 13:51:34 2020 +0800
Add device allocation for loss compute
commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:16:27 2020 +0800
Revert drop_last
commit 1dabe33a5a223b758cc761fc8741c6224205a34b
Merge: a1ce9b1 4b8450b
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:15:49 2020 +0800
Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed
commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27
Author: yizhi.chen <chenyzsjtu@outlook.com>
Date: Thu Jul 9 11:15:21 2020 +0800
fix lr warning
commit 4b8450b46db76e5e58cd95df965d4736077cfb0e
Merge: b9a50ae 02c63ef
Author: yzchen <Chenyzsjtu@gmail.com>
Date: Wed Jul 8 21:24:24 2020 +0800
Merge p
- train.py +207 -135
- utils/datasets.py +16 -12
- utils/utils.py +20 -6
@@ -1,11 +1,13 @@
|
|
1 |
import argparse
|
2 |
|
|
|
3 |
import torch.distributed as dist
|
4 |
import torch.nn.functional as F
|
5 |
import torch.optim as optim
|
6 |
import torch.optim.lr_scheduler as lr_scheduler
|
7 |
import torch.utils.data
|
8 |
from torch.utils.tensorboard import SummaryWriter
|
|
|
9 |
|
10 |
import test # import test.py to get mAP after each epoch
|
11 |
from models.yolo import Model
|
@@ -42,7 +44,7 @@ hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD
|
|
42 |
'shear': 0.0} # image shear (+/- deg)
|
43 |
|
44 |
|
45 |
-
def train(hyp):
|
46 |
print(f'Hyperparameters {hyp}')
|
47 |
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
|
48 |
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
|
@@ -59,11 +61,16 @@ def train(hyp):
|
|
59 |
yaml.dump(vars(opt), f, sort_keys=False)
|
60 |
|
61 |
epochs = opt.epochs # 300
|
62 |
-
batch_size = opt.batch_size
|
|
|
63 |
weights = opt.weights # initial training weights
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Configure
|
66 |
-
init_seeds(
|
67 |
with open(opt.data) as f:
|
68 |
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
69 |
train_path = data_dict['train']
|
@@ -72,8 +79,9 @@ def train(hyp):
|
|
72 |
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
73 |
|
74 |
# Remove previous results
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
# Create model
|
79 |
model = Model(opt.cfg, nc=nc).to(device)
|
@@ -84,8 +92,15 @@ def train(hyp):
|
|
84 |
|
85 |
# Optimizer
|
86 |
nbs = 64 # nominal batch size
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
90 |
for k, v in model.named_parameters():
|
91 |
if v.requires_grad:
|
@@ -106,13 +121,10 @@ def train(hyp):
|
|
106 |
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
107 |
del pg0, pg1, pg2
|
108 |
|
109 |
-
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
110 |
-
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
|
111 |
-
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
112 |
-
# plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)
|
113 |
-
|
114 |
# Load Model
|
115 |
-
|
|
|
|
|
116 |
start_epoch, best_fitness = 0, 0.0
|
117 |
if weights.endswith('.pt'): # pytorch format
|
118 |
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
@@ -124,7 +136,7 @@ def train(hyp):
|
|
124 |
except KeyError as e:
|
125 |
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
|
126 |
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
|
127 |
-
% (
|
128 |
raise KeyError(s) from e
|
129 |
|
130 |
# load optimizer
|
@@ -141,7 +153,7 @@ def train(hyp):
|
|
141 |
start_epoch = ckpt['epoch'] + 1
|
142 |
if epochs < start_epoch:
|
143 |
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
144 |
-
(
|
145 |
epochs += ckpt['epoch'] # finetune additional epochs
|
146 |
|
147 |
del ckpt
|
@@ -150,25 +162,41 @@ def train(hyp):
|
|
150 |
if mixed_precision:
|
151 |
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Trainloader
|
163 |
-
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
164 |
-
|
165 |
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
166 |
nb = len(dataloader) # number of batches
|
167 |
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
168 |
|
169 |
# Testloader
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
|
173 |
# Model parameters
|
174 |
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
@@ -179,48 +207,63 @@ def train(hyp):
|
|
179 |
model.names = names
|
180 |
|
181 |
# Class frequency
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
tb_writer
|
190 |
-
|
191 |
-
|
192 |
-
if not opt.noautoanchor:
|
193 |
-
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
194 |
-
|
195 |
-
# Exponential moving average
|
196 |
-
ema = torch_utils.ModelEMA(model)
|
197 |
|
|
|
|
|
|
|
198 |
# Start training
|
199 |
t0 = time.time()
|
200 |
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
201 |
maps = np.zeros(nc) # mAP per class
|
202 |
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
203 |
scheduler.last_epoch = start_epoch - 1 # do not move
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
# torch.autograd.set_detect_anomaly(True)
|
208 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
209 |
model.train()
|
210 |
|
211 |
# Update image weights (optional)
|
|
|
212 |
if dataset.image_weights:
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
# Update mosaic border
|
218 |
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
219 |
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
220 |
|
221 |
mloss = torch.zeros(4, device=device) # mean losses
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
224 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
225 |
ni = i + nb * epoch # number integrated batches (since train start)
|
226 |
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
@@ -229,7 +272,7 @@ def train(hyp):
|
|
229 |
if ni <= nw:
|
230 |
xi = [0, nw] # x interp
|
231 |
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
232 |
-
accumulate = max(1, np.interp(ni, xi, [1, nbs /
|
233 |
for j, x in enumerate(optimizer.param_groups):
|
234 |
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
235 |
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
@@ -249,6 +292,9 @@ def train(hyp):
|
|
249 |
|
250 |
# Loss
|
251 |
loss, loss_items = compute_loss(pred, targets.to(device), model)
|
|
|
|
|
|
|
252 |
if not torch.isfinite(loss):
|
253 |
print('WARNING: non-finite loss, ending training ', loss_items)
|
254 |
return results
|
@@ -264,106 +310,110 @@ def train(hyp):
|
|
264 |
if ni % accumulate == 0:
|
265 |
optimizer.step()
|
266 |
optimizer.zero_grad()
|
267 |
-
ema
|
|
|
268 |
|
269 |
# Print
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
'%
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
tb_writer
|
282 |
-
|
|
|
283 |
|
284 |
# end batch ------------------------------------------------------------------------------------------------
|
285 |
|
286 |
# Scheduler
|
287 |
scheduler.step()
|
288 |
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
337 |
# end epoch ----------------------------------------------------------------------------------------------------
|
338 |
# end training
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
os.
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
355 |
torch.cuda.empty_cache()
|
356 |
return results
|
357 |
|
358 |
|
359 |
if __name__ == '__main__':
|
360 |
-
check_git_status()
|
361 |
parser = argparse.ArgumentParser()
|
362 |
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
|
363 |
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
364 |
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
|
365 |
parser.add_argument('--epochs', type=int, default=300)
|
366 |
-
parser.add_argument('--batch-size', type=int, default=16)
|
367 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
368 |
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
369 |
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
|
@@ -379,32 +429,54 @@ if __name__ == '__main__':
|
|
379 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
380 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
381 |
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
|
|
|
|
|
|
382 |
opt = parser.parse_args()
|
383 |
|
384 |
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
|
385 |
if last and not opt.weights:
|
386 |
print(f'Resuming training from {last}')
|
387 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
|
|
|
|
388 |
opt.cfg = check_file(opt.cfg) # check file
|
389 |
opt.data = check_file(opt.data) # check file
|
390 |
if opt.hyp: # update hyps
|
391 |
opt.hyp = check_file(opt.hyp) # check file
|
392 |
with open(opt.hyp) as f:
|
393 |
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
|
394 |
-
print(opt)
|
395 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
396 |
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
|
|
|
|
397 |
if device.type == 'cpu':
|
398 |
mixed_precision = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
# Train
|
401 |
if not opt.evolve:
|
402 |
-
|
403 |
-
|
404 |
-
|
|
|
|
|
|
|
405 |
|
406 |
# Evolve hyperparameters (optional)
|
407 |
else:
|
|
|
|
|
408 |
tb_writer = None
|
409 |
opt.notest, opt.nosave = True, True # only test/save final epoch
|
410 |
if opt.bucket:
|
@@ -443,7 +515,7 @@ if __name__ == '__main__':
|
|
443 |
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
444 |
|
445 |
# Train mutation
|
446 |
-
results = train(hyp.copy())
|
447 |
|
448 |
# Write mutation results
|
449 |
print_mutation(hyp, results, opt.bucket)
|
|
|
1 |
import argparse
|
2 |
|
3 |
+
import torch
|
4 |
import torch.distributed as dist
|
5 |
import torch.nn.functional as F
|
6 |
import torch.optim as optim
|
7 |
import torch.optim.lr_scheduler as lr_scheduler
|
8 |
import torch.utils.data
|
9 |
from torch.utils.tensorboard import SummaryWriter
|
10 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
11 |
|
12 |
import test # import test.py to get mAP after each epoch
|
13 |
from models.yolo import Model
|
|
|
44 |
'shear': 0.0} # image shear (+/- deg)
|
45 |
|
46 |
|
47 |
+
def train(hyp, tb_writer, opt, device):
|
48 |
print(f'Hyperparameters {hyp}')
|
49 |
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
|
50 |
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
|
|
|
61 |
yaml.dump(vars(opt), f, sort_keys=False)
|
62 |
|
63 |
epochs = opt.epochs # 300
|
64 |
+
batch_size = opt.batch_size # batch size per process.
|
65 |
+
total_batch_size = opt.total_batch_size
|
66 |
weights = opt.weights # initial training weights
|
67 |
+
local_rank = opt.local_rank
|
68 |
+
|
69 |
+
# TODO: Init DDP logging. Only the first process is allowed to log.
|
70 |
+
# Since I see lots of print here, the logging configuration is skipped here. We may see repeated outputs.
|
71 |
|
72 |
# Configure
|
73 |
+
init_seeds(2+local_rank)
|
74 |
with open(opt.data) as f:
|
75 |
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
76 |
train_path = data_dict['train']
|
|
|
79 |
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
80 |
|
81 |
# Remove previous results
|
82 |
+
if local_rank in [-1, 0]:
|
83 |
+
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
|
84 |
+
os.remove(f)
|
85 |
|
86 |
# Create model
|
87 |
model = Model(opt.cfg, nc=nc).to(device)
|
|
|
92 |
|
93 |
# Optimizer
|
94 |
nbs = 64 # nominal batch size
|
95 |
+
# the default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
|
96 |
+
# all-reduce operation is carried out during loss.backward().
|
97 |
+
# Thus, there would be redundant all-reduce communications in a accumulation procedure,
|
98 |
+
# which means, the result is still right but the training speed gets slower.
|
99 |
+
# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
|
100 |
+
# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
|
101 |
+
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
102 |
+
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
103 |
+
|
104 |
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
105 |
for k, v in model.named_parameters():
|
106 |
if v.requires_grad:
|
|
|
121 |
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
122 |
del pg0, pg1, pg2
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
# Load Model
|
125 |
+
# Avoid multiple downloads.
|
126 |
+
with torch_distributed_zero_first(local_rank):
|
127 |
+
google_utils.attempt_download(weights)
|
128 |
start_epoch, best_fitness = 0, 0.0
|
129 |
if weights.endswith('.pt'): # pytorch format
|
130 |
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
|
|
136 |
except KeyError as e:
|
137 |
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
|
138 |
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
|
139 |
+
% (weights, opt.cfg, weights, weights)
|
140 |
raise KeyError(s) from e
|
141 |
|
142 |
# load optimizer
|
|
|
153 |
start_epoch = ckpt['epoch'] + 1
|
154 |
if epochs < start_epoch:
|
155 |
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
156 |
+
(weights, ckpt['epoch'], epochs))
|
157 |
epochs += ckpt['epoch'] # finetune additional epochs
|
158 |
|
159 |
del ckpt
|
|
|
162 |
if mixed_precision:
|
163 |
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
164 |
|
165 |
+
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
166 |
+
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
|
167 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
168 |
+
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
169 |
+
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
170 |
+
|
171 |
+
# DP mode
|
172 |
+
if device.type != 'cpu' and local_rank == -1 and torch.cuda.device_count() > 1:
|
173 |
+
model = torch.nn.DataParallel(model)
|
174 |
+
|
175 |
+
# Exponential moving average
|
176 |
+
# From https://github.com/rwightman/pytorch-image-models/blob/master/train.py:
|
177 |
+
# "Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper"
|
178 |
+
# chenyzsjtu: ema should be placed before after SyncBN. As SyncBN introduces new modules.
|
179 |
+
if opt.sync_bn and device.type != 'cpu' and local_rank != -1:
|
180 |
+
print("SyncBN activated!")
|
181 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
182 |
+
ema = torch_utils.ModelEMA(model) if local_rank in [-1, 0] else None
|
183 |
+
|
184 |
+
# DDP mode
|
185 |
+
if device.type != 'cpu' and local_rank != -1:
|
186 |
+
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
|
187 |
|
188 |
# Trainloader
|
189 |
+
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
190 |
+
cache=opt.cache_images, rect=opt.rect, local_rank=local_rank, world_size=opt.world_size)
|
191 |
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
192 |
nb = len(dataloader) # number of batches
|
193 |
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
194 |
|
195 |
# Testloader
|
196 |
+
if local_rank in [-1, 0]:
|
197 |
+
# local_rank is set to -1. Because only the first process is expected to do evaluation.
|
198 |
+
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False,
|
199 |
+
cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0]
|
200 |
|
201 |
# Model parameters
|
202 |
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
|
|
207 |
model.names = names
|
208 |
|
209 |
# Class frequency
|
210 |
+
# Only one check and log is needed.
|
211 |
+
if local_rank in [-1, 0]:
|
212 |
+
labels = np.concatenate(dataset.labels, 0)
|
213 |
+
c = torch.tensor(labels[:, 0]) # classes
|
214 |
+
# cf = torch.bincount(c.long(), minlength=nc) + 1.
|
215 |
+
# model._initialize_biases(cf.to(device))
|
216 |
+
plot_labels(labels, save_dir=log_dir)
|
217 |
+
if tb_writer:
|
218 |
+
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
|
219 |
+
tb_writer.add_histogram('classes', c, 0)
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
# Check anchors
|
222 |
+
if not opt.noautoanchor:
|
223 |
+
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
224 |
# Start training
|
225 |
t0 = time.time()
|
226 |
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
227 |
maps = np.zeros(nc) # mAP per class
|
228 |
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
229 |
scheduler.last_epoch = start_epoch - 1 # do not move
|
230 |
+
if local_rank in [0, -1]:
|
231 |
+
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
232 |
+
print('Using %g dataloader workers' % dataloader.num_workers)
|
233 |
+
print('Starting training for %g epochs...' % epochs)
|
234 |
# torch.autograd.set_detect_anomaly(True)
|
235 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
236 |
model.train()
|
237 |
|
238 |
# Update image weights (optional)
|
239 |
+
# When in DDP mode, the generated indices will be broadcasted to synchronize dataset.
|
240 |
if dataset.image_weights:
|
241 |
+
# Generate indices.
|
242 |
+
if local_rank in [-1, 0]:
|
243 |
+
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
244 |
+
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
|
245 |
+
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
|
246 |
+
# Broadcast.
|
247 |
+
if local_rank != -1:
|
248 |
+
indices = torch.zeros([dataset.n], dtype=torch.int)
|
249 |
+
if local_rank == 0:
|
250 |
+
indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int)
|
251 |
+
dist.broadcast(indices, 0)
|
252 |
+
if local_rank != 0:
|
253 |
+
dataset.indices = indices.cpu().numpy()
|
254 |
|
255 |
# Update mosaic border
|
256 |
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
257 |
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
258 |
|
259 |
mloss = torch.zeros(4, device=device) # mean losses
|
260 |
+
if local_rank != -1:
|
261 |
+
dataloader.sampler.set_epoch(epoch)
|
262 |
+
pbar = enumerate(dataloader)
|
263 |
+
if local_rank in [-1, 0]:
|
264 |
+
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
265 |
+
pbar = tqdm(pbar, total=nb) # progress bar
|
266 |
+
optimizer.zero_grad()
|
267 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
268 |
ni = i + nb * epoch # number integrated batches (since train start)
|
269 |
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
|
|
272 |
if ni <= nw:
|
273 |
xi = [0, nw] # x interp
|
274 |
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
275 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
276 |
for j, x in enumerate(optimizer.param_groups):
|
277 |
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
278 |
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
|
|
292 |
|
293 |
# Loss
|
294 |
loss, loss_items = compute_loss(pred, targets.to(device), model)
|
295 |
+
# loss is scaled with batch size in func compute_loss. But in DDP mode, gradient is averaged between devices.
|
296 |
+
if local_rank != -1:
|
297 |
+
loss *= opt.world_size
|
298 |
if not torch.isfinite(loss):
|
299 |
print('WARNING: non-finite loss, ending training ', loss_items)
|
300 |
return results
|
|
|
310 |
if ni % accumulate == 0:
|
311 |
optimizer.step()
|
312 |
optimizer.zero_grad()
|
313 |
+
if ema is not None:
|
314 |
+
ema.update(model)
|
315 |
|
316 |
# Print
|
317 |
+
if local_rank in [-1, 0]:
|
318 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
319 |
+
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
320 |
+
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
321 |
+
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
322 |
+
pbar.set_description(s)
|
323 |
+
|
324 |
+
# Plot
|
325 |
+
if ni < 3:
|
326 |
+
f = str(Path(log_dir) / ('train_batch%g.jpg' % ni)) # filename
|
327 |
+
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
328 |
+
if tb_writer and result is not None:
|
329 |
+
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
330 |
+
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
331 |
|
332 |
# end batch ------------------------------------------------------------------------------------------------
|
333 |
|
334 |
# Scheduler
|
335 |
scheduler.step()
|
336 |
|
337 |
+
# Only the first process in DDP mode is allowed to log or save checkpoints.
|
338 |
+
if local_rank in [-1, 0]:
|
339 |
+
# mAP
|
340 |
+
if ema is not None:
|
341 |
+
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
|
342 |
+
final_epoch = epoch + 1 == epochs
|
343 |
+
if not opt.notest or final_epoch: # Calculate mAP
|
344 |
+
results, maps, times = test.test(opt.data,
|
345 |
+
batch_size=total_batch_size,
|
346 |
+
imgsz=imgsz_test,
|
347 |
+
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
|
348 |
+
model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
|
349 |
+
single_cls=opt.single_cls,
|
350 |
+
dataloader=testloader,
|
351 |
+
save_dir=log_dir)
|
352 |
+
# Explicitly keep the shape.
|
353 |
+
# Write
|
354 |
+
with open(results_file, 'a') as f:
|
355 |
+
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
356 |
+
if len(opt.name) and opt.bucket:
|
357 |
+
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
|
358 |
+
|
359 |
+
# Tensorboard
|
360 |
+
if tb_writer:
|
361 |
+
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
|
362 |
+
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
|
363 |
+
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
|
364 |
+
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
|
365 |
+
tb_writer.add_scalar(tag, x, epoch)
|
366 |
+
|
367 |
+
# Update best mAP
|
368 |
+
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
369 |
+
if fi > best_fitness:
|
370 |
+
best_fitness = fi
|
371 |
+
|
372 |
+
# Save model
|
373 |
+
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
374 |
+
if save:
|
375 |
+
with open(results_file, 'r') as f: # create checkpoint
|
376 |
+
ckpt = {'epoch': epoch,
|
377 |
+
'best_fitness': best_fitness,
|
378 |
+
'training_results': f.read(),
|
379 |
+
'model': ema.ema.module if hasattr(ema, 'module') else ema.ema,
|
380 |
+
'optimizer': None if final_epoch else optimizer.state_dict()}
|
381 |
+
|
382 |
+
# Save last, best and delete
|
383 |
+
torch.save(ckpt, last)
|
384 |
+
if (best_fitness == fi) and not final_epoch:
|
385 |
+
torch.save(ckpt, best)
|
386 |
+
del ckpt
|
387 |
# end epoch ----------------------------------------------------------------------------------------------------
|
388 |
# end training
|
389 |
|
390 |
+
if local_rank in [-1, 0]:
|
391 |
+
# Strip optimizers
|
392 |
+
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
|
393 |
+
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
|
394 |
+
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
|
395 |
+
if os.path.exists(f1):
|
396 |
+
os.rename(f1, f2) # rename
|
397 |
+
ispt = f2.endswith('.pt') # is *.pt
|
398 |
+
strip_optimizer(f2) if ispt else None # strip optimizer
|
399 |
+
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
|
400 |
+
# Finish
|
401 |
+
if not opt.evolve:
|
402 |
+
plot_results() # save as results.png
|
403 |
+
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
404 |
+
|
405 |
+
dist.destroy_process_group() if local_rank not in [-1,0] else None
|
406 |
torch.cuda.empty_cache()
|
407 |
return results
|
408 |
|
409 |
|
410 |
if __name__ == '__main__':
|
|
|
411 |
parser = argparse.ArgumentParser()
|
412 |
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
|
413 |
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
414 |
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
|
415 |
parser.add_argument('--epochs', type=int, default=300)
|
416 |
+
parser.add_argument('--batch-size', type=int, default=16, help="Total batch size for all gpus.")
|
417 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
418 |
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
419 |
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
|
|
|
429 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
430 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
431 |
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
432 |
+
parser.add_argument("--sync-bn", action="store_true", help="Use sync-bn, only avaible in DDP mode.")
|
433 |
+
# Parameter For DDP.
|
434 |
+
parser.add_argument('--local_rank', type=int, default=-1, help="Extra parameter for DDP implementation. Don't use it manually.")
|
435 |
opt = parser.parse_args()
|
436 |
|
437 |
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
|
438 |
if last and not opt.weights:
|
439 |
print(f'Resuming training from {last}')
|
440 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
441 |
+
if opt.local_rank in [-1, 0]:
|
442 |
+
check_git_status()
|
443 |
opt.cfg = check_file(opt.cfg) # check file
|
444 |
opt.data = check_file(opt.data) # check file
|
445 |
if opt.hyp: # update hyps
|
446 |
opt.hyp = check_file(opt.hyp) # check file
|
447 |
with open(opt.hyp) as f:
|
448 |
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
|
|
|
449 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
450 |
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
451 |
+
opt.total_batch_size = opt.batch_size
|
452 |
+
opt.world_size = 1
|
453 |
if device.type == 'cpu':
|
454 |
mixed_precision = False
|
455 |
+
elif opt.local_rank != -1:
|
456 |
+
# DDP mode
|
457 |
+
assert torch.cuda.device_count() > opt.local_rank
|
458 |
+
torch.cuda.set_device(opt.local_rank)
|
459 |
+
device = torch.device("cuda", opt.local_rank)
|
460 |
+
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
461 |
+
|
462 |
+
opt.world_size = dist.get_world_size()
|
463 |
+
assert opt.batch_size % opt.world_size == 0, "Batch size is not a multiple of the number of devices given!"
|
464 |
+
opt.batch_size = opt.total_batch_size // opt.world_size
|
465 |
+
print(opt)
|
466 |
|
467 |
# Train
|
468 |
if not opt.evolve:
|
469 |
+
if opt.local_rank in [-1, 0]:
|
470 |
+
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
471 |
+
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
|
472 |
+
else:
|
473 |
+
tb_writer = None
|
474 |
+
train(hyp, tb_writer, opt, device)
|
475 |
|
476 |
# Evolve hyperparameters (optional)
|
477 |
else:
|
478 |
+
assert opt.local_rank == -1, "DDP mode currently not implemented for Evolve!"
|
479 |
+
|
480 |
tb_writer = None
|
481 |
opt.notest, opt.nosave = True, True # only test/save final epoch
|
482 |
if opt.bucket:
|
|
|
515 |
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
516 |
|
517 |
# Train mutation
|
518 |
+
results = train(hyp.copy(), tb_writer, opt, device)
|
519 |
|
520 |
# Write mutation results
|
521 |
print_mutation(hyp, results, opt.bucket)
|
@@ -14,7 +14,7 @@ from PIL import Image, ExifTags
|
|
14 |
from torch.utils.data import Dataset
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
-
from utils.utils import xyxy2xywh, xywh2xyxy
|
18 |
|
19 |
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
20 |
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
@@ -46,21 +46,25 @@ def exif_size(img):
|
|
46 |
return s
|
47 |
|
48 |
|
49 |
-
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
|
59 |
batch_size = min(batch_size, len(dataset))
|
60 |
-
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
|
|
|
61 |
dataloader = torch.utils.data.DataLoader(dataset,
|
62 |
batch_size=batch_size,
|
63 |
num_workers=nw,
|
|
|
64 |
pin_memory=True,
|
65 |
collate_fn=LoadImagesAndLabels.collate_fn)
|
66 |
return dataloader, dataset
|
@@ -301,7 +305,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|
301 |
f += glob.iglob(p + os.sep + '*.*')
|
302 |
else:
|
303 |
raise Exception('%s does not exist' % p)
|
304 |
-
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
|
305 |
except Exception as e:
|
306 |
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
307 |
|
|
|
14 |
from torch.utils.data import Dataset
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
+
from utils.utils import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
18 |
|
19 |
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
20 |
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
|
|
46 |
return s
|
47 |
|
48 |
|
49 |
+
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, local_rank=-1, world_size=1):
|
50 |
+
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
|
51 |
+
with torch_distributed_zero_first(local_rank):
|
52 |
+
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
53 |
+
augment=augment, # augment images
|
54 |
+
hyp=hyp, # augmentation hyperparameters
|
55 |
+
rect=rect, # rectangular training
|
56 |
+
cache_images=cache,
|
57 |
+
single_cls=opt.single_cls,
|
58 |
+
stride=int(stride),
|
59 |
+
pad=pad)
|
60 |
|
61 |
batch_size = min(batch_size, len(dataset))
|
62 |
+
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
|
63 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
|
64 |
dataloader = torch.utils.data.DataLoader(dataset,
|
65 |
batch_size=batch_size,
|
66 |
num_workers=nw,
|
67 |
+
sampler=train_sampler,
|
68 |
pin_memory=True,
|
69 |
collate_fn=LoadImagesAndLabels.collate_fn)
|
70 |
return dataloader, dataset
|
|
|
305 |
f += glob.iglob(p + os.sep + '*.*')
|
306 |
else:
|
307 |
raise Exception('%s does not exist' % p)
|
308 |
+
self.img_files = sorted([x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
|
309 |
except Exception as e:
|
310 |
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
311 |
|
@@ -8,6 +8,7 @@ import time
|
|
8 |
from copy import copy
|
9 |
from pathlib import Path
|
10 |
from sys import platform
|
|
|
11 |
|
12 |
import cv2
|
13 |
import matplotlib
|
@@ -31,6 +32,18 @@ matplotlib.rc('font', **{'size': 11})
|
|
31 |
cv2.setNumThreads(0)
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def init_seeds(seed=0):
|
35 |
random.seed(seed)
|
36 |
np.random.seed(seed)
|
@@ -424,15 +437,16 @@ class BCEBlurWithLogitsLoss(nn.Module):
|
|
424 |
|
425 |
|
426 |
def compute_loss(p, targets, model): # predictions, targets, model
|
|
|
427 |
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
428 |
-
lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
|
429 |
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
430 |
h = model.hyp # hyperparameters
|
431 |
red = 'mean' # Loss reduction (sum or mean)
|
432 |
|
433 |
# Define criteria
|
434 |
-
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red)
|
435 |
-
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red)
|
436 |
|
437 |
# class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
438 |
cp, cn = smooth_BCE(eps=0.0)
|
@@ -448,7 +462,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|
448 |
balance = [1.0, 1.0, 1.0]
|
449 |
for i, pi in enumerate(p): # layer index, layer predictions
|
450 |
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
451 |
-
tobj = torch.zeros_like(pi[..., 0]) # target obj
|
452 |
|
453 |
nb = b.shape[0] # number of targets
|
454 |
if nb:
|
@@ -458,7 +472,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|
458 |
# GIoU
|
459 |
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
460 |
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
461 |
-
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
462 |
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou(prediction, target)
|
463 |
lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss
|
464 |
|
@@ -467,7 +481,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|
467 |
|
468 |
# Class
|
469 |
if model.nc > 1: # cls loss (only if multiple classes)
|
470 |
-
t = torch.full_like(ps[:, 5:], cn) # targets
|
471 |
t[range(nb), tcls[i]] = cp
|
472 |
lcls += BCEcls(ps[:, 5:], t) # BCE
|
473 |
|
|
|
8 |
from copy import copy
|
9 |
from pathlib import Path
|
10 |
from sys import platform
|
11 |
+
from contextlib import contextmanager
|
12 |
|
13 |
import cv2
|
14 |
import matplotlib
|
|
|
32 |
cv2.setNumThreads(0)
|
33 |
|
34 |
|
35 |
+
@contextmanager
|
36 |
+
def torch_distributed_zero_first(local_rank: int):
|
37 |
+
"""
|
38 |
+
Decorator to make all processes in distributed training wait for each local_master to do something.
|
39 |
+
"""
|
40 |
+
if local_rank not in [-1, 0]:
|
41 |
+
torch.distributed.barrier()
|
42 |
+
yield
|
43 |
+
if local_rank == 0:
|
44 |
+
torch.distributed.barrier()
|
45 |
+
|
46 |
+
|
47 |
def init_seeds(seed=0):
|
48 |
random.seed(seed)
|
49 |
np.random.seed(seed)
|
|
|
437 |
|
438 |
|
439 |
def compute_loss(p, targets, model): # predictions, targets, model
|
440 |
+
device = targets.device
|
441 |
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
442 |
+
lcls, lbox, lobj = ft([0]).to(device), ft([0]).to(device), ft([0]).to(device)
|
443 |
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
444 |
h = model.hyp # hyperparameters
|
445 |
red = 'mean' # Loss reduction (sum or mean)
|
446 |
|
447 |
# Define criteria
|
448 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red).to(device)
|
449 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red).to(device)
|
450 |
|
451 |
# class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
452 |
cp, cn = smooth_BCE(eps=0.0)
|
|
|
462 |
balance = [1.0, 1.0, 1.0]
|
463 |
for i, pi in enumerate(p): # layer index, layer predictions
|
464 |
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
465 |
+
tobj = torch.zeros_like(pi[..., 0]).to(device) # target obj
|
466 |
|
467 |
nb = b.shape[0] # number of targets
|
468 |
if nb:
|
|
|
472 |
# GIoU
|
473 |
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
474 |
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
475 |
+
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
476 |
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou(prediction, target)
|
477 |
lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss
|
478 |
|
|
|
481 |
|
482 |
# Class
|
483 |
if model.nc > 1: # cls loss (only if multiple classes)
|
484 |
+
t = torch.full_like(ps[:, 5:], cn).to(device) # targets
|
485 |
t[range(nb), tcls[i]] = cp
|
486 |
lcls += BCEcls(ps[:, 5:], t) # BCE
|
487 |
|