glenn-jocher
commited on
Commit
•
3c6e2f7
1
Parent(s):
d7cfbc4
Single-source training (#680)
Browse files* Single-source training
* Extract hyperparameters into seperate files
* weight decay scientific notation yaml reader bug fix
* remove import glob
* intersect_dicts() implementation
* 'or' bug fix
* .to(device) bug fix
- data/hyp.finetune.yaml +27 -0
- data/hyp.scratch.yaml +27 -0
- train.py +44 -85
- utils/general.py +1 -1
- utils/torch_utils.py +6 -2
data/hyp.finetune.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for VOC fine-tuning
|
2 |
+
# python train.py --batch 64 --cfg '' --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
|
3 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
4 |
+
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
8 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
9 |
+
giou: 0.05 # GIoU loss gain
|
10 |
+
cls: 0.5 # cls loss gain
|
11 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
12 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
13 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
14 |
+
iou_t: 0.20 # IoU training threshold
|
15 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.5 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mixup: 0.0 # image mixup (probability)
|
data/hyp.scratch.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for COCO training from scratch
|
2 |
+
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
|
3 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
4 |
+
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
8 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
9 |
+
giou: 0.05 # GIoU loss gain
|
10 |
+
cls: 0.5 # cls loss gain
|
11 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
12 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
13 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
14 |
+
iou_t: 0.20 # IoU training threshold
|
15 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.5 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mixup: 0.0 # image mixup (probability)
|
train.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import argparse
|
2 |
-
import glob
|
3 |
import math
|
4 |
import os
|
5 |
import random
|
@@ -26,31 +25,7 @@ from utils.general import (
|
|
26 |
labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results,
|
27 |
get_latest_run, check_git_status, check_file, increment_dir, print_mutation, plot_evolution)
|
28 |
from utils.google_utils import attempt_download
|
29 |
-
from utils.torch_utils import init_seeds, ModelEMA, select_device
|
30 |
-
|
31 |
-
# Hyperparameters
|
32 |
-
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
33 |
-
'momentum': 0.937, # SGD momentum/Adam beta1
|
34 |
-
'weight_decay': 5e-4, # optimizer weight decay
|
35 |
-
'giou': 0.05, # GIoU loss gain
|
36 |
-
'cls': 0.5, # cls loss gain
|
37 |
-
'cls_pw': 1.0, # cls BCELoss positive_weight
|
38 |
-
'obj': 1.0, # obj loss gain (scale with pixels)
|
39 |
-
'obj_pw': 1.0, # obj BCELoss positive_weight
|
40 |
-
'iou_t': 0.20, # IoU training threshold
|
41 |
-
'anchor_t': 4.0, # anchor-multiple threshold
|
42 |
-
'fl_gamma': 0.0, # focal loss gamma (efficientDet default gamma=1.5)
|
43 |
-
'hsv_h': 0.015, # image HSV-Hue augmentation (fraction)
|
44 |
-
'hsv_s': 0.7, # image HSV-Saturation augmentation (fraction)
|
45 |
-
'hsv_v': 0.4, # image HSV-Value augmentation (fraction)
|
46 |
-
'degrees': 0.0, # image rotation (+/- deg)
|
47 |
-
'translate': 0.5, # image translation (+/- fraction)
|
48 |
-
'scale': 0.5, # image scale (+/- gain)
|
49 |
-
'shear': 0.0, # image shear (+/- deg)
|
50 |
-
'perspective': 0.0, # image perspective (+/- fraction), range 0-0.001
|
51 |
-
'flipud': 0.0, # image flip up-down (probability)
|
52 |
-
'fliplr': 0.5, # image flip left-right (probability)
|
53 |
-
'mixup': 0.0} # image mixup (probability)
|
54 |
|
55 |
|
56 |
def train(hyp, opt, device, tb_writer=None):
|
@@ -63,7 +38,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|
63 |
results_file = str(log_dir / 'results.txt')
|
64 |
epochs, batch_size, total_batch_size, weights, rank = \
|
65 |
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
66 |
-
|
67 |
# TODO: Use DDP logging. Only the first process is allowed to log.
|
68 |
# Save run settings
|
69 |
with open(log_dir / 'hyp.yaml', 'w') as f:
|
@@ -81,38 +56,35 @@ def train(hyp, opt, device, tb_writer=None):
|
|
81 |
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
|
82 |
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
# Optimizer
|
97 |
nbs = 64 # nominal batch size
|
98 |
-
# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
|
99 |
-
# all-reduce operation is carried out during loss.backward().
|
100 |
-
# Thus, there would be redundant all-reduce communications in a accumulation procedure,
|
101 |
-
# which means, the result is still right but the training speed gets slower.
|
102 |
-
# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
|
103 |
-
# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
|
104 |
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
105 |
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
106 |
|
107 |
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
108 |
for k, v in model.named_parameters():
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
if opt.adam:
|
118 |
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
@@ -130,45 +102,27 @@ def train(hyp, opt, device, tb_writer=None):
|
|
130 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
131 |
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
132 |
|
133 |
-
#
|
134 |
-
with torch_distributed_zero_first(rank):
|
135 |
-
attempt_download(weights)
|
136 |
start_epoch, best_fitness = 0, 0.0
|
137 |
-
if
|
138 |
-
|
139 |
-
|
140 |
-
# load model
|
141 |
-
try:
|
142 |
-
exclude = ['anchor'] # exclude keys
|
143 |
-
ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
|
144 |
-
if k in model.state_dict() and not any(x in k for x in exclude)
|
145 |
-
and model.state_dict()[k].shape == v.shape}
|
146 |
-
model.load_state_dict(ckpt['model'], strict=False)
|
147 |
-
print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(model.state_dict()), weights))
|
148 |
-
except KeyError as e:
|
149 |
-
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
|
150 |
-
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
|
151 |
-
% (weights, opt.cfg, weights, weights)
|
152 |
-
raise KeyError(s) from e
|
153 |
-
|
154 |
-
# load optimizer
|
155 |
if ckpt['optimizer'] is not None:
|
156 |
optimizer.load_state_dict(ckpt['optimizer'])
|
157 |
best_fitness = ckpt['best_fitness']
|
158 |
|
159 |
-
#
|
160 |
if ckpt.get('training_results') is not None:
|
161 |
with open(results_file, 'w') as file:
|
162 |
file.write(ckpt['training_results']) # write results.txt
|
163 |
|
164 |
-
#
|
165 |
start_epoch = ckpt['epoch'] + 1
|
166 |
if epochs < start_epoch:
|
167 |
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
168 |
(weights, ckpt['epoch'], epochs))
|
169 |
epochs += ckpt['epoch'] # finetune additional epochs
|
170 |
|
171 |
-
del ckpt
|
172 |
|
173 |
# DP mode
|
174 |
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
@@ -186,6 +140,10 @@ def train(hyp, opt, device, tb_writer=None):
|
|
186 |
if cuda and rank != -1:
|
187 |
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
188 |
|
|
|
|
|
|
|
|
|
189 |
# Trainloader
|
190 |
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
191 |
cache=opt.cache_images, rect=opt.rect, local_rank=rank,
|
@@ -411,9 +369,10 @@ def train(hyp, opt, device, tb_writer=None):
|
|
411 |
|
412 |
if __name__ == '__main__':
|
413 |
parser = argparse.ArgumentParser()
|
414 |
-
parser.add_argument('--
|
|
|
415 |
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
416 |
-
parser.add_argument('--hyp', type=str, default='', help='
|
417 |
parser.add_argument('--epochs', type=int, default=300)
|
418 |
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
419 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
@@ -426,7 +385,6 @@ if __name__ == '__main__':
|
|
426 |
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
427 |
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
428 |
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
429 |
-
parser.add_argument('--weights', type=str, default='', help='initial weights path')
|
430 |
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
|
431 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
432 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
@@ -444,18 +402,17 @@ if __name__ == '__main__':
|
|
444 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
445 |
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
|
446 |
check_git_status()
|
447 |
-
|
448 |
-
opt.data = check_file(opt.data) # check
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
|
453 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
454 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
455 |
opt.total_batch_size = opt.batch_size
|
456 |
opt.world_size = 1
|
457 |
opt.global_rank = -1
|
458 |
-
|
459 |
# DDP mode
|
460 |
if opt.local_rank != -1:
|
461 |
assert torch.cuda.device_count() > opt.local_rank
|
@@ -468,6 +425,8 @@ if __name__ == '__main__':
|
|
468 |
opt.batch_size = opt.total_batch_size // opt.world_size
|
469 |
|
470 |
print(opt)
|
|
|
|
|
471 |
|
472 |
# Train
|
473 |
if not opt.evolve:
|
|
|
1 |
import argparse
|
|
|
2 |
import math
|
3 |
import os
|
4 |
import random
|
|
|
25 |
labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results,
|
26 |
get_latest_run, check_git_status, check_file, increment_dir, print_mutation, plot_evolution)
|
27 |
from utils.google_utils import attempt_download
|
28 |
+
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def train(hyp, opt, device, tb_writer=None):
|
|
|
38 |
results_file = str(log_dir / 'results.txt')
|
39 |
epochs, batch_size, total_batch_size, weights, rank = \
|
40 |
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
41 |
+
|
42 |
# TODO: Use DDP logging. Only the first process is allowed to log.
|
43 |
# Save run settings
|
44 |
with open(log_dir / 'hyp.yaml', 'w') as f:
|
|
|
56 |
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
|
57 |
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
58 |
|
59 |
+
# Model
|
60 |
+
pretrained = weights.endswith('.pt')
|
61 |
+
if pretrained:
|
62 |
+
with torch_distributed_zero_first(rank):
|
63 |
+
attempt_download(weights) # download if not found locally
|
64 |
+
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
65 |
+
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
|
66 |
+
exclude = ['anchor'] if opt.cfg else [] # exclude keys
|
67 |
+
state_dict = ckpt['model'].float().state_dict() # to FP32
|
68 |
+
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
69 |
+
model.load_state_dict(state_dict, strict=False) # load
|
70 |
+
print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
71 |
+
else:
|
72 |
+
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
73 |
|
74 |
# Optimizer
|
75 |
nbs = 64 # nominal batch size
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
77 |
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
78 |
|
79 |
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
80 |
for k, v in model.named_parameters():
|
81 |
+
v.requires_grad = True
|
82 |
+
if '.bias' in k:
|
83 |
+
pg2.append(v) # biases
|
84 |
+
elif '.weight' in k and '.bn' not in k:
|
85 |
+
pg1.append(v) # apply weight decay
|
86 |
+
else:
|
87 |
+
pg0.append(v) # all else
|
88 |
|
89 |
if opt.adam:
|
90 |
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
|
|
102 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
103 |
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
104 |
|
105 |
+
# Resume
|
|
|
|
|
106 |
start_epoch, best_fitness = 0, 0.0
|
107 |
+
if pretrained:
|
108 |
+
# Optimizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
if ckpt['optimizer'] is not None:
|
110 |
optimizer.load_state_dict(ckpt['optimizer'])
|
111 |
best_fitness = ckpt['best_fitness']
|
112 |
|
113 |
+
# Results
|
114 |
if ckpt.get('training_results') is not None:
|
115 |
with open(results_file, 'w') as file:
|
116 |
file.write(ckpt['training_results']) # write results.txt
|
117 |
|
118 |
+
# Epochs
|
119 |
start_epoch = ckpt['epoch'] + 1
|
120 |
if epochs < start_epoch:
|
121 |
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
122 |
(weights, ckpt['epoch'], epochs))
|
123 |
epochs += ckpt['epoch'] # finetune additional epochs
|
124 |
|
125 |
+
del ckpt, state_dict
|
126 |
|
127 |
# DP mode
|
128 |
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
|
|
140 |
if cuda and rank != -1:
|
141 |
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
142 |
|
143 |
+
# Image sizes
|
144 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
145 |
+
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
146 |
+
|
147 |
# Trainloader
|
148 |
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
149 |
cache=opt.cache_images, rect=opt.rect, local_rank=rank,
|
|
|
369 |
|
370 |
if __name__ == '__main__':
|
371 |
parser = argparse.ArgumentParser()
|
372 |
+
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
|
373 |
+
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
374 |
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
375 |
+
parser.add_argument('--hyp', type=str, default='data/hyp.finetune.yaml', help='hyperparameters path')
|
376 |
parser.add_argument('--epochs', type=int, default=300)
|
377 |
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
378 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
|
|
385 |
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
386 |
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
387 |
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
|
|
388 |
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
|
389 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
390 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
|
|
402 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
403 |
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
|
404 |
check_git_status()
|
405 |
+
|
406 |
+
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
407 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
408 |
+
assert len(opt.hyp), '--hyp must be specified'
|
409 |
+
|
|
|
410 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
411 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
412 |
opt.total_batch_size = opt.batch_size
|
413 |
opt.world_size = 1
|
414 |
opt.global_rank = -1
|
415 |
+
|
416 |
# DDP mode
|
417 |
if opt.local_rank != -1:
|
418 |
assert torch.cuda.device_count() > opt.local_rank
|
|
|
425 |
opt.batch_size = opt.total_batch_size // opt.world_size
|
426 |
|
427 |
print(opt)
|
428 |
+
with open(opt.hyp) as f:
|
429 |
+
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
|
430 |
|
431 |
# Train
|
432 |
if not opt.evolve:
|
utils/general.py
CHANGED
@@ -120,7 +120,7 @@ def check_anchor_order(m):
|
|
120 |
|
121 |
def check_file(file):
|
122 |
# Searches for file if not found locally
|
123 |
-
if os.path.isfile(file):
|
124 |
return file
|
125 |
else:
|
126 |
files = glob.glob('./**/' + file, recursive=True) # find file
|
|
|
120 |
|
121 |
def check_file(file):
|
122 |
# Searches for file if not found locally
|
123 |
+
if os.path.isfile(file) or file == '':
|
124 |
return file
|
125 |
else:
|
126 |
files = glob.glob('./**/' + file, recursive=True) # find file
|
utils/torch_utils.py
CHANGED
@@ -55,10 +55,14 @@ def time_synchronized():
|
|
55 |
|
56 |
|
57 |
def is_parallel(model):
|
58 |
-
# is model is parallel with DP or DDP
|
59 |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
def initialize_weights(model):
|
63 |
for m in model.modules():
|
64 |
t = type(m)
|
@@ -72,7 +76,7 @@ def initialize_weights(model):
|
|
72 |
|
73 |
|
74 |
def find_modules(model, mclass=nn.Conv2d):
|
75 |
-
#
|
76 |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
77 |
|
78 |
|
|
|
55 |
|
56 |
|
57 |
def is_parallel(model):
|
|
|
58 |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
59 |
|
60 |
|
61 |
+
def intersect_dicts(da, db, exclude=()):
|
62 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
63 |
+
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
64 |
+
|
65 |
+
|
66 |
def initialize_weights(model):
|
67 |
for m in model.modules():
|
68 |
t = type(m)
|
|
|
76 |
|
77 |
|
78 |
def find_modules(model, mclass=nn.Conv2d):
|
79 |
+
# Finds layer indices matching module class 'mclass'
|
80 |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
81 |
|
82 |
|