glenn-jocher
commited on
W&B logging add hyperparameters (#1399)
Browse files* W&B logging add hyperparameters
* hyp bug fix and image logging updates
* if plots and wandb:
* cleanup
* wandb/ gitignore add
* cleanup 2
* cleanup 3
* move wandb import to top of file
* wandb evolve
* update import
* wandb.run.finish()
* default anchors: 3
- .gitignore +2 -0
- data/hyp.scratch.yaml +1 -1
- test.py +16 -14
- train.py +37 -29
- utils/plots.py +4 -4
.gitignore
CHANGED
@@ -79,9 +79,11 @@ sdist/
|
|
79 |
var/
|
80 |
wheels/
|
81 |
*.egg-info/
|
|
|
82 |
.installed.cfg
|
83 |
*.egg
|
84 |
|
|
|
85 |
# PyInstaller
|
86 |
# Usually these files are written by a python script from a template
|
87 |
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
|
79 |
var/
|
80 |
wheels/
|
81 |
*.egg-info/
|
82 |
+
wandb/
|
83 |
.installed.cfg
|
84 |
*.egg
|
85 |
|
86 |
+
|
87 |
# PyInstaller
|
88 |
# Usually these files are written by a python script from a template
|
89 |
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
data/hyp.scratch.yaml
CHANGED
@@ -17,7 +17,7 @@ obj: 1.0 # obj loss gain (scale with pixels)
|
|
17 |
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
iou_t: 0.20 # IoU training threshold
|
19 |
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
-
# anchors:
|
21 |
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
|
|
17 |
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
iou_t: 0.20 # IoU training threshold
|
19 |
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
test.py
CHANGED
@@ -75,7 +75,7 @@ def test(data,
|
|
75 |
niou = iouv.numel()
|
76 |
|
77 |
# Logging
|
78 |
-
log_imgs = min(log_imgs, 100) # ceil
|
79 |
try:
|
80 |
import wandb # Weights & Biases
|
81 |
except ImportError:
|
@@ -132,6 +132,7 @@ def test(data,
|
|
132 |
continue
|
133 |
|
134 |
# Append to text file
|
|
|
135 |
if save_txt:
|
136 |
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
137 |
x = pred.clone()
|
@@ -139,18 +140,18 @@ def test(data,
|
|
139 |
for *xyxy, conf, cls in x:
|
140 |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
141 |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
142 |
-
with open(
|
143 |
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
144 |
|
145 |
# W&B logging
|
146 |
-
if len(wandb_images) < log_imgs:
|
147 |
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
148 |
"class_id": int(cls),
|
149 |
"box_caption": "%s %.3f" % (names[cls], conf),
|
150 |
"scores": {"class_score": conf},
|
151 |
-
"domain": "pixel"} for *xyxy, conf, cls in pred.
|
152 |
boxes = {"predictions": {"box_data": box_data, "class_labels": names}}
|
153 |
-
wandb_images.append(wandb.Image(img[si], boxes=boxes))
|
154 |
|
155 |
# Clip boxes to image bounds
|
156 |
clip_coords(pred, (height, width))
|
@@ -158,13 +159,13 @@ def test(data,
|
|
158 |
# Append to pycocotools JSON dictionary
|
159 |
if save_json:
|
160 |
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
161 |
-
image_id =
|
162 |
box = pred[:, :4].clone() # xyxy
|
163 |
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
164 |
box = xyxy2xywh(box) # xywh
|
165 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
166 |
for p, b in zip(pred.tolist(), box.tolist()):
|
167 |
-
jdict.append({'image_id':
|
168 |
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
169 |
'bbox': [round(x, 3) for x in b],
|
170 |
'score': round(p[4], 5)})
|
@@ -203,15 +204,11 @@ def test(data,
|
|
203 |
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
204 |
|
205 |
# Plot images
|
206 |
-
if plots and batch_i <
|
207 |
f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
|
208 |
-
plot_images(img, targets, paths,
|
209 |
f = save_dir / f'test_batch{batch_i}_pred.jpg'
|
210 |
-
plot_images(img, output_to_target(output, width, height), paths,
|
211 |
-
|
212 |
-
# W&B logging
|
213 |
-
if wandb_images:
|
214 |
-
wandb.log({"outputs": wandb_images})
|
215 |
|
216 |
# Compute statistics
|
217 |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
@@ -223,6 +220,11 @@ def test(data,
|
|
223 |
else:
|
224 |
nt = torch.zeros(1)
|
225 |
|
|
|
|
|
|
|
|
|
|
|
226 |
# Print results
|
227 |
pf = '%20s' + '%12.3g' * 6 # print format
|
228 |
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
|
|
75 |
niou = iouv.numel()
|
76 |
|
77 |
# Logging
|
78 |
+
log_imgs, wandb = min(log_imgs, 100), None # ceil
|
79 |
try:
|
80 |
import wandb # Weights & Biases
|
81 |
except ImportError:
|
|
|
132 |
continue
|
133 |
|
134 |
# Append to text file
|
135 |
+
path = Path(paths[si])
|
136 |
if save_txt:
|
137 |
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
138 |
x = pred.clone()
|
|
|
140 |
for *xyxy, conf, cls in x:
|
141 |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
142 |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
143 |
+
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
|
144 |
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
145 |
|
146 |
# W&B logging
|
147 |
+
if plots and len(wandb_images) < log_imgs:
|
148 |
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
149 |
"class_id": int(cls),
|
150 |
"box_caption": "%s %.3f" % (names[cls], conf),
|
151 |
"scores": {"class_score": conf},
|
152 |
+
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
153 |
boxes = {"predictions": {"box_data": box_data, "class_labels": names}}
|
154 |
+
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
|
155 |
|
156 |
# Clip boxes to image bounds
|
157 |
clip_coords(pred, (height, width))
|
|
|
159 |
# Append to pycocotools JSON dictionary
|
160 |
if save_json:
|
161 |
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
162 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
163 |
box = pred[:, :4].clone() # xyxy
|
164 |
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
165 |
box = xyxy2xywh(box) # xywh
|
166 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
167 |
for p, b in zip(pred.tolist(), box.tolist()):
|
168 |
+
jdict.append({'image_id': image_id,
|
169 |
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
170 |
'bbox': [round(x, 3) for x in b],
|
171 |
'score': round(p[4], 5)})
|
|
|
204 |
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
205 |
|
206 |
# Plot images
|
207 |
+
if plots and batch_i < 3:
|
208 |
f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
|
209 |
+
plot_images(img, targets, paths, f, names) # labels
|
210 |
f = save_dir / f'test_batch{batch_i}_pred.jpg'
|
211 |
+
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
|
|
|
|
|
|
|
|
|
212 |
|
213 |
# Compute statistics
|
214 |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
|
|
220 |
else:
|
221 |
nt = torch.zeros(1)
|
222 |
|
223 |
+
# W&B logging
|
224 |
+
if plots and wandb:
|
225 |
+
wandb.log({"Images": wandb_images})
|
226 |
+
wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]})
|
227 |
+
|
228 |
# Print results
|
229 |
pf = '%20s' + '%12.3g' * 6 # print format
|
230 |
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
train.py
CHANGED
@@ -34,6 +34,12 @@ from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_di
|
|
34 |
|
35 |
logger = logging.getLogger(__name__)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def train(hyp, opt, device, tb_writer=None, wandb=None):
|
39 |
logger.info(f'Hyperparameters {hyp}')
|
@@ -54,6 +60,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
54 |
yaml.dump(vars(opt), f, sort_keys=False)
|
55 |
|
56 |
# Configure
|
|
|
57 |
cuda = device.type != 'cpu'
|
58 |
init_seeds(2 + rank)
|
59 |
with open(opt.data) as f:
|
@@ -122,6 +129,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
122 |
|
123 |
# Logging
|
124 |
if wandb and wandb.run is None:
|
|
|
125 |
wandb_run = wandb.init(config=opt, resume="allow",
|
126 |
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
127 |
name=save_dir.stem,
|
@@ -164,7 +172,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
164 |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
165 |
logger.info('Using SyncBatchNorm()')
|
166 |
|
167 |
-
#
|
168 |
ema = ModelEMA(model) if rank in [-1, 0] else None
|
169 |
|
170 |
# DDP mode
|
@@ -191,10 +199,12 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
191 |
c = torch.tensor(labels[:, 0]) # classes
|
192 |
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
193 |
# model._initialize_biases(cf.to(device))
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
198 |
|
199 |
# Anchors
|
200 |
if not opt.noautoanchor:
|
@@ -298,14 +308,17 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
298 |
pbar.set_description(s)
|
299 |
|
300 |
# Plot
|
301 |
-
if ni < 3:
|
302 |
-
f =
|
303 |
-
|
304 |
-
# if tb_writer
|
305 |
-
#
|
306 |
-
#
|
|
|
|
|
307 |
|
308 |
# end batch ------------------------------------------------------------------------------------------------
|
|
|
309 |
|
310 |
# Scheduler
|
311 |
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
@@ -325,7 +338,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
325 |
single_cls=opt.single_cls,
|
326 |
dataloader=testloader,
|
327 |
save_dir=save_dir,
|
328 |
-
plots=
|
329 |
log_imgs=opt.log_imgs if wandb else 0)
|
330 |
|
331 |
# Write
|
@@ -380,11 +393,16 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
|
|
380 |
strip_optimizer(f2) # strip optimizer
|
381 |
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
|
382 |
# Finish
|
383 |
-
if
|
384 |
plot_results(save_dir=save_dir) # save as results.png
|
|
|
|
|
|
|
385 |
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
|
|
|
|
386 |
|
387 |
-
|
388 |
torch.cuda.empty_cache()
|
389 |
return results
|
390 |
|
@@ -413,7 +431,7 @@ if __name__ == '__main__':
|
|
413 |
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
414 |
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
415 |
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
416 |
-
parser.add_argument('--log-imgs', type=int, default=
|
417 |
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
418 |
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
419 |
parser.add_argument('--name', default='exp', help='save to project/name')
|
@@ -442,7 +460,7 @@ if __name__ == '__main__':
|
|
442 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
443 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
444 |
opt.name = 'evolve' if opt.evolve else opt.name
|
445 |
-
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
|
446 |
|
447 |
# DDP mode
|
448 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
@@ -465,20 +483,10 @@ if __name__ == '__main__':
|
|
465 |
# Train
|
466 |
logger.info(opt)
|
467 |
if not opt.evolve:
|
468 |
-
tb_writer
|
469 |
if opt.global_rank in [-1, 0]:
|
470 |
-
# Tensorboard
|
471 |
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
|
472 |
-
tb_writer = SummaryWriter(opt.save_dir) #
|
473 |
-
|
474 |
-
# W&B
|
475 |
-
try:
|
476 |
-
import wandb
|
477 |
-
|
478 |
-
assert os.environ.get('WANDB_DISABLED') != 'true'
|
479 |
-
except (ImportError, AssertionError):
|
480 |
-
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
481 |
-
|
482 |
train(hyp, opt, device, tb_writer, wandb)
|
483 |
|
484 |
# Evolve hyperparameters (optional)
|
@@ -553,7 +561,7 @@ if __name__ == '__main__':
|
|
553 |
hyp[k] = round(hyp[k], 5) # significant digits
|
554 |
|
555 |
# Train mutation
|
556 |
-
results = train(hyp.copy(), opt, device)
|
557 |
|
558 |
# Write mutation results
|
559 |
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
|
|
34 |
|
35 |
logger = logging.getLogger(__name__)
|
36 |
|
37 |
+
try:
|
38 |
+
import wandb
|
39 |
+
except ImportError:
|
40 |
+
wandb = None
|
41 |
+
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
42 |
+
|
43 |
|
44 |
def train(hyp, opt, device, tb_writer=None, wandb=None):
|
45 |
logger.info(f'Hyperparameters {hyp}')
|
|
|
60 |
yaml.dump(vars(opt), f, sort_keys=False)
|
61 |
|
62 |
# Configure
|
63 |
+
plots = not opt.evolve # create plots
|
64 |
cuda = device.type != 'cpu'
|
65 |
init_seeds(2 + rank)
|
66 |
with open(opt.data) as f:
|
|
|
129 |
|
130 |
# Logging
|
131 |
if wandb and wandb.run is None:
|
132 |
+
opt.hyp = hyp # add hyperparameters
|
133 |
wandb_run = wandb.init(config=opt, resume="allow",
|
134 |
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
135 |
name=save_dir.stem,
|
|
|
172 |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
173 |
logger.info('Using SyncBatchNorm()')
|
174 |
|
175 |
+
# EMA
|
176 |
ema = ModelEMA(model) if rank in [-1, 0] else None
|
177 |
|
178 |
# DDP mode
|
|
|
199 |
c = torch.tensor(labels[:, 0]) # classes
|
200 |
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
201 |
# model._initialize_biases(cf.to(device))
|
202 |
+
if plots:
|
203 |
+
plot_labels(labels, save_dir=save_dir)
|
204 |
+
if tb_writer:
|
205 |
+
tb_writer.add_histogram('classes', c, 0)
|
206 |
+
if wandb:
|
207 |
+
wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})
|
208 |
|
209 |
# Anchors
|
210 |
if not opt.noautoanchor:
|
|
|
308 |
pbar.set_description(s)
|
309 |
|
310 |
# Plot
|
311 |
+
if plots and ni < 3:
|
312 |
+
f = save_dir / f'train_batch{ni}.jpg' # filename
|
313 |
+
plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
314 |
+
# if tb_writer:
|
315 |
+
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
316 |
+
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
317 |
+
elif plots and ni == 3 and wandb:
|
318 |
+
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
|
319 |
|
320 |
# end batch ------------------------------------------------------------------------------------------------
|
321 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
322 |
|
323 |
# Scheduler
|
324 |
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
|
|
338 |
single_cls=opt.single_cls,
|
339 |
dataloader=testloader,
|
340 |
save_dir=save_dir,
|
341 |
+
plots=plots and final_epoch,
|
342 |
log_imgs=opt.log_imgs if wandb else 0)
|
343 |
|
344 |
# Write
|
|
|
393 |
strip_optimizer(f2) # strip optimizer
|
394 |
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
|
395 |
# Finish
|
396 |
+
if plots:
|
397 |
plot_results(save_dir=save_dir) # save as results.png
|
398 |
+
if wandb:
|
399 |
+
wandb.log({"Results": [wandb.Image(str(save_dir / x), caption=x) for x in
|
400 |
+
['results.png', 'precision-recall_curve.png']]})
|
401 |
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
402 |
+
else:
|
403 |
+
dist.destroy_process_group()
|
404 |
|
405 |
+
wandb.run.finish() if wandb and wandb.run else None
|
406 |
torch.cuda.empty_cache()
|
407 |
return results
|
408 |
|
|
|
431 |
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
432 |
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
433 |
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
434 |
+
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
|
435 |
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
436 |
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
437 |
parser.add_argument('--name', default='exp', help='save to project/name')
|
|
|
460 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
461 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
462 |
opt.name = 'evolve' if opt.evolve else opt.name
|
463 |
+
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
464 |
|
465 |
# DDP mode
|
466 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
|
|
483 |
# Train
|
484 |
logger.info(opt)
|
485 |
if not opt.evolve:
|
486 |
+
tb_writer = None # init loggers
|
487 |
if opt.global_rank in [-1, 0]:
|
|
|
488 |
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
|
489 |
+
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
train(hyp, opt, device, tb_writer, wandb)
|
491 |
|
492 |
# Evolve hyperparameters (optional)
|
|
|
561 |
hyp[k] = round(hyp[k], 5) # significant digits
|
562 |
|
563 |
# Train mutation
|
564 |
+
results = train(hyp.copy(), opt, device, wandb=wandb)
|
565 |
|
566 |
# Write mutation results
|
567 |
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
utils/plots.py
CHANGED
@@ -158,13 +158,13 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max
|
|
158 |
cls = int(classes[j])
|
159 |
color = colors[cls % len(colors)]
|
160 |
cls = names[cls] if names else cls
|
161 |
-
if labels or conf[j] > 0.
|
162 |
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
163 |
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
164 |
|
165 |
# Draw image filename labels
|
166 |
-
if paths
|
167 |
-
label =
|
168 |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
169 |
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
170 |
lineType=cv2.LINE_AA)
|
@@ -172,7 +172,7 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max
|
|
172 |
# Image border
|
173 |
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
174 |
|
175 |
-
if fname
|
176 |
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
177 |
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
178 |
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
|
|
158 |
cls = int(classes[j])
|
159 |
color = colors[cls % len(colors)]
|
160 |
cls = names[cls] if names else cls
|
161 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
162 |
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
163 |
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
164 |
|
165 |
# Draw image filename labels
|
166 |
+
if paths:
|
167 |
+
label = Path(paths[i]).name[:40] # trim to 40 char
|
168 |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
169 |
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
170 |
lineType=cv2.LINE_AA)
|
|
|
172 |
# Image border
|
173 |
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
174 |
|
175 |
+
if fname:
|
176 |
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
177 |
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
178 |
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|