Spaces:
Runtime error
Runtime error
File size: 12,503 Bytes
2c1b6a1 a66df69 92a6755 5c906aa 92a6755 a66df69 92a6755 a66df69 2c1b6a1 92a6755 2c1b6a1 eddb685 3404b7a 92a6755 2c1b6a1 eddb685 a66df69 2c1b6a1 a66df69 2c1b6a1 eddb685 d6fba19 3404b7a 92a6755 3404b7a 5c906aa 3404b7a 92a6755 3404b7a 92a6755 3404b7a 5c906aa 3404b7a 92a6755 3404b7a 92a6755 2c1b6a1 eddb685 d6fba19 92a6755 5c906aa 92a6755 5c906aa 92a6755 bf42f74 2c1b6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
<html lang="en">
<head>
<title>Bootstrap Example</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
<style>
.faded {
margin: 0 auto;
background: var(--window-color);
box-shadow: 0 0 5px 5px var(--window-color);
font-family: cursive;
font-family: "Gill Sans", sans-serif;
display: inline-block
}
.padded {
width: 100%;
max-width: 800px;
text-align: left;
}
.demo_title {
font-size: 32px;
box-shadow: 0 0 5px 5px var(--window-color);
font-family: -apple-system,BlinkMacSystemFont,Segoe UI,Helvetica,Arial,
sans-serif,Apple Color Emoji,Segoe UI Emoji;
}
.demo_text {
font-size: 16px;
box-shadow: 0 0 5px 5px var(--window-color);
font-family: -apple-system,BlinkMacSystemFont,Segoe UI,Helvetica,Arial,
sans-serif,Apple Color Emoji,Segoe UI Emoji;
}
.tab-group {
font-size: 15px;
}
.tab-content {
margin-top: 16px;
}
ul > li {
margin: 3px 0;
}
ol > li {
margin: 5px 0;
}
/* a:link {
color: #00194a;
text-decoration: none;
}
a:visited {
color: #3f004a;
text-decoration: none;
} */
</style>
</head>
<body>
<div class="tab-group" style="width: 100%; margin:0 auto;">
<div>
<!-- Nav tabs -->
<ul class="nav nav-tabs" role="tablist">
<li role="presentation" class="active"><a href="#tab1" aria-controls="tab1" role="tab" data-toggle="tab">"Efficient Training"</a></li>
<li role="presentation"><a href="#tab2" aria-controls="tab2" role="tab" data-toggle="tab">Security</a></li>
<li role="presentation"><a href="#tab3" aria-controls="tab3" role="tab" data-toggle="tab">Make Your Own</a></li>
</ul>
<!-- Tab panes -->
<div class="tab-content">
<div role="tabpanel" class="tab-pane active" id="tab1">
<span class="padded faded text">
<b> TODO 1</b> Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
</span>
</div>
<div role="tabpanel" class="tab-pane" id="tab2">
<p>In this section, we discuss common concerns related to security of the collaborative training.</p>
<p>
<b>Q: If I join a collaborative training, do I allow other people to execute code on my computer?</b>
</p>
<p>
<b>A:</b> During the training, participants only exchange data (gradients, statistics, model weights) and never send code to each other.
No other peer can execute code on your computer.
</p>
<p>
To join the training, you typically need to run the code (implementing the model, data streaming, training loop, etc.)
from a repository or a Colab notebook provided by the authors of the experiment.
This is no different from running any other open source project/Colab notebook.
</p>
<p>
<b>Q: Can a malicious participant influence the training outcome?</b>
</p>
<p>
<b>A:</b> It is indeed possible unless we use some defense mechanism.
For instance, a malicious participant can damage model weights by sending large numbers instead of the correct gradients.
The same can happen due to broken hardware or misconfiguration.
</p>
<ul>
<li>
<p>
One possible defense is using <b>authentication</b> combined with <b>model checkpointing</b>.
In this case, participants should log in (e.g. with their Hugging Face account) to interact with the rest of the collaboration.
In turn, moderators can screen potential participants and add them to an allowlist.
If something goes wrong (e.g. if a participant sends invalid gradients and the model diverges),
the moderators remove them from the list and revert the model to the latest checkpoint unaffected by the attack.
</p>
<p><b>Spoiler (TODO): How to implement authentication in a decentralized system efficiently?</b></p>
<p>
Nice bonus: using this data, the moderators can acknowledge the personal contribution of each participant.
</p>
</li>
<li>
<p>
Another defense is replacing the naive averaging of the peers' gradients with an <b>aggregation technique robust to outliers</b>.
<a href="https://arxiv.org/abs/2012.10333">Karimireddy et al. (2020)</a>
suggested such a technique (named CenteredClip) and proved that it does not significantly affect the model's convergence.
</p>
<p><b>Spoiler (TODO): How does CenteredClip protect from outliers? (Interactive Demo)</b></p>
<p>
In our case, CenteredClip is useful but not enough to protect from malicious participants,
since it implies that the CenteredClip procedure itself is performed by a trusted server.
In contrast, in our decentralized system, all participants can aggregate a part of the gradients and we cannot assume all of them to be trusted.
</p>
<p>
Recently, <a href="https://arxiv.org/abs/2106.11257">Gorbunov et al. (2021)</a>
proposed a robust aggregation protocol for decentralized systems that does not require this assumption.
This protocol uses CenteredClip as a subroutine but is able to detect and ban participants who performed it incorrectly.
</p>
</li>
</ul>
</div>
<div role="tabpanel" class="tab-pane" id="tab3">
<p>In this section, we provide a roadmap for you to run the collaborative training yourself.</p>
<p>
<b>Got confused?</b> Feel free to ask any questions at our <a href="https://discord.gg/uGugx9zYvN">Discord</a>!
</p>
<ol>
<li>
Set up dataset streaming:
<ul>
<li>
<a href="https://huggingface.co/docs/datasets/share_dataset.html">Upload</a> your dataset to Hugging Face Hub
in a streaming-friendly format (<a href="https://huggingface.co/datasets/laion/laion_100m_vqgan_f8">example</a>).
</li>
<li>Set up dataset streaming (see the "Efficient Training" section).</li>
</ul>
</li>
<li>
Write code of training peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_trainer.py">example</a>):
<ul>
<li>Implement your model, set up dataset streaming, and write the training loop.</li>
<li>
Get familiar with the hivemind library
(e.g., via the <a href="https://learning-at-home.readthedocs.io/en/latest/user/quickstart.html">quickstart</a>).
</li>
<li>
In the training loop, wrap up your PyTorch optimizer with
<a href="https://learning-at-home.readthedocs.io/en/latest/modules/optim.html#hivemind.optim.experimental.optimizer.Optimizer">hivemind.Optimizer</a>
(<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/task.py#L121">example</a>).
</li>
</ul>
</li>
<li>
<b>(optional)</b> Write code of auxiliary peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_aux_peer.py">example</a>):
<ul>
<li>
Auxiliary peers a special kind of peers responsible for
logging loss and other metrics (e.g., to <a href="https://wandb.ai/">Weights & Biases</a>)
and uploading model checkpoints (e.g., to <a href="https://huggingface.co/docs/transformers/model_sharing">Hugging Face Hub</a>).
</li>
<li>
Such peers don't need to calculate gradients and may be run on cheap machines without GPUs.
</li>
<li>
They can serve as a convenient entry point to
<a href="https://learning-at-home.readthedocs.io/en/latest/modules/dht.html">hivemind.DHT</a>
(i.e., their address can be specified as <code>initial_peers</code>).
</li>
<li>
It is useful to fix their address by providing <code>host_maddrs</code> and <code>identity_path</code>
arguments to <code>hivemind.DHT</code>
(these are forwarded to the underlying <a href="https://libp2p.io/">libp2p</a> daemon).
</li>
</ul>
</li>
<li>
<b>(optional)</b> Make it easier for other people to join:
<ul>
<li>
Create notebooks for free GPU providers (Google Colab, Kaggle, AWS SageMaker, etc.).
People may run them online and/or download and run them on their own hardware.
</li>
<li>
<a href="https://huggingface.co/organizations/new">Create</a> a Hugging Face organization
with all resources related to the training
(dataset, model, inference demo, links to a dashboard with loss and other metrics, etc.).
Look at <a href="https://huggingface.co/training-transformers-together">ours</a> as an example.
</li>
<li>
Set up an authentication system (see the "Security" section).
For example, you can ask people to join your organization with their Hugging Face accounts
(Hugging Face allows to share a link for joining or manually approve new participants).
This allows you to screen participants,
acknowledge their contributions (e.g., make a leaderboard), and
ban accounts who behave maliciously.
</li>
<li>
Set up an inference demo for your model (e.g., using <a href="https://huggingface.co/spaces">Spaces</a>) or
a script that periodically uploads the inference results to show the training progress.
</li>
</ul>
</li>
</ol>
</div>
</div>
</div>
</div>
</body> |