Spaces:
Runtime error
Runtime error
robot-bengali-2
commited on
Commit
•
92a6755
1
Parent(s):
2068f16
Write "Make Your Own" section
Browse files- app.py +4 -4
- charts.py +1 -1
- st_helpers.py +1 -1
- static/content_style.css +2 -2
- static/header_style.css +2 -2
- static/tabs.html +128 -34
app.py
CHANGED
@@ -20,10 +20,10 @@ content_text(f"""
|
|
20 |
There was a time when you could comfortably train state-of-the-art vision and language models at home on your workstation.
|
21 |
The first convolutional neural net to beat ImageNet
|
22 |
(<a target="_blank" href="https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf">AlexNet</a>)
|
23 |
-
was trained for 5-6 days on two gamer-grade GPUs.
|
24 |
(<a target="_blank" href="https://arxiv.org/abs/2106.04803">CoAtNet</a>)
|
25 |
takes 20,000 TPU-v3 days. And things are even worse in the NLP world: training
|
26 |
-
<a target="_blank" href="https://arxiv.org/abs/2005.14165">GPT
|
27 |
with 8x A100 would take decades.""")
|
28 |
|
29 |
content_text(f"""
|
@@ -47,7 +47,7 @@ content_title("How do I join?")
|
|
47 |
content_text("""
|
48 |
That's easy. First, make sure you're logged in at Hugging Face. If you don't have an account, create one <b>TODO</b>.<br>
|
49 |
|
50 |
-
<ul style="text-align: left; list-style-position: inside; margin-top: 12px; margin-left: -
|
51 |
<li style="margin-top: 4px;">
|
52 |
Join our organization on Hugging Face here: <b>TODO</b>. </li>
|
53 |
<li style="margin-top: 4px;">
|
@@ -62,7 +62,7 @@ Please note that we currently limit the number of colab participants to <b>TODO<
|
|
62 |
with other users. If there are too many active peers, take a look at alternative starter kits here <b>TODO</b>
|
63 |
""")
|
64 |
|
65 |
-
content_title("
|
66 |
content_text("<b> TODO </b> General Story That Weaves Together Three Tabs Below . Lorem ipsum dolor sit amet, "
|
67 |
"consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim"
|
68 |
" ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. "
|
|
|
20 |
There was a time when you could comfortably train state-of-the-art vision and language models at home on your workstation.
|
21 |
The first convolutional neural net to beat ImageNet
|
22 |
(<a target="_blank" href="https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf">AlexNet</a>)
|
23 |
+
was trained for 5-6 days on two gamer-grade GPUs. In contrast, today's TOP-1 ImageNet model
|
24 |
(<a target="_blank" href="https://arxiv.org/abs/2106.04803">CoAtNet</a>)
|
25 |
takes 20,000 TPU-v3 days. And things are even worse in the NLP world: training
|
26 |
+
<a target="_blank" href="https://arxiv.org/abs/2005.14165">GPT‑3</a> on a top-tier server
|
27 |
with 8x A100 would take decades.""")
|
28 |
|
29 |
content_text(f"""
|
|
|
47 |
content_text("""
|
48 |
That's easy. First, make sure you're logged in at Hugging Face. If you don't have an account, create one <b>TODO</b>.<br>
|
49 |
|
50 |
+
<ul style="text-align: left; list-style-position: inside; margin-top: 12px; margin-left: -24px;">
|
51 |
<li style="margin-top: 4px;">
|
52 |
Join our organization on Hugging Face here: <b>TODO</b>. </li>
|
53 |
<li style="margin-top: 4px;">
|
|
|
62 |
with other users. If there are too many active peers, take a look at alternative starter kits here <b>TODO</b>
|
63 |
""")
|
64 |
|
65 |
+
content_title("How does it work?")
|
66 |
content_text("<b> TODO </b> General Story That Weaves Together Three Tabs Below . Lorem ipsum dolor sit amet, "
|
67 |
"consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim"
|
68 |
" ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. "
|
charts.py
CHANGED
@@ -12,7 +12,7 @@ def draw_current_progress():
|
|
12 |
source, {
|
13 |
"height": 200,
|
14 |
"title": {
|
15 |
-
"text": "Training
|
16 |
"dy": 6,
|
17 |
},
|
18 |
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
|
|
|
12 |
source, {
|
13 |
"height": 200,
|
14 |
"title": {
|
15 |
+
"text": "Training DALL-E with volunteers (updated every few minutes during NeurIPS 2021)",
|
16 |
"dy": 6,
|
17 |
},
|
18 |
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
|
st_helpers.py
CHANGED
@@ -30,7 +30,7 @@ def make_header():
|
|
30 |
|
31 |
|
32 |
def make_tabs():
|
33 |
-
components.html(f"{tabs_html}", height=
|
34 |
|
35 |
|
36 |
def make_footer():
|
|
|
30 |
|
31 |
|
32 |
def make_tabs():
|
33 |
+
components.html(f"{tabs_html}", height=1000, scrolling=True)
|
34 |
|
35 |
|
36 |
def make_footer():
|
static/content_style.css
CHANGED
@@ -60,11 +60,11 @@
|
|
60 |
border-color:rgba(27,31,35,.35);
|
61 |
background-image:linear-gradient(180deg, #f0f3f6, #e6ebf1 90%)
|
62 |
}
|
63 |
-
a:link {
|
64 |
color: #00194a;
|
65 |
text-decoration: none;
|
66 |
}
|
67 |
a:visited {
|
68 |
color: #3f004a;
|
69 |
text-decoration: none;
|
70 |
-
}
|
|
|
60 |
border-color:rgba(27,31,35,.35);
|
61 |
background-image:linear-gradient(180deg, #f0f3f6, #e6ebf1 90%)
|
62 |
}
|
63 |
+
/* a:link {
|
64 |
color: #00194a;
|
65 |
text-decoration: none;
|
66 |
}
|
67 |
a:visited {
|
68 |
color: #3f004a;
|
69 |
text-decoration: none;
|
70 |
+
} */
|
static/header_style.css
CHANGED
@@ -100,14 +100,14 @@ canvas {
|
|
100 |
border-color:rgba(27,31,35,.35);
|
101 |
background-image:linear-gradient(180deg, #f0f3f6, #e6ebf1 90%)
|
102 |
}
|
103 |
-
a:link {
|
104 |
color: #00194a;
|
105 |
text-decoration: none;
|
106 |
}
|
107 |
a:visited {
|
108 |
color: #3f004a;
|
109 |
text-decoration: none;
|
110 |
-
}
|
111 |
.tooltip {
|
112 |
position: relative;
|
113 |
display: inline-block;
|
|
|
100 |
border-color:rgba(27,31,35,.35);
|
101 |
background-image:linear-gradient(180deg, #f0f3f6, #e6ebf1 90%)
|
102 |
}
|
103 |
+
/* a:link {
|
104 |
color: #00194a;
|
105 |
text-decoration: none;
|
106 |
}
|
107 |
a:visited {
|
108 |
color: #3f004a;
|
109 |
text-decoration: none;
|
110 |
+
} */
|
111 |
.tooltip {
|
112 |
position: relative;
|
113 |
display: inline-block;
|
static/tabs.html
CHANGED
@@ -32,25 +32,37 @@
|
|
32 |
font-family: -apple-system,BlinkMacSystemFont,Segoe UI,Helvetica,Arial,
|
33 |
sans-serif,Apple Color Emoji,Segoe UI Emoji;
|
34 |
}
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
color: #00194a;
|
37 |
text-decoration: none;
|
38 |
}
|
39 |
a:visited {
|
40 |
color: #3f004a;
|
41 |
text-decoration: none;
|
42 |
-
}
|
43 |
</style>
|
44 |
</head>
|
45 |
<body>
|
46 |
|
47 |
-
<div
|
48 |
<div>
|
49 |
<!-- Nav tabs -->
|
50 |
<ul class="nav nav-tabs" role="tablist">
|
51 |
<li role="presentation" class="active"><a href="#tab1" aria-controls="tab1" role="tab" data-toggle="tab">"Efficient Training"</a></li>
|
52 |
<li role="presentation"><a href="#tab2" aria-controls="tab2" role="tab" data-toggle="tab">Security</a></li>
|
53 |
-
<li role="presentation"><a href="#tab3" aria-controls="tab3" role="tab" data-toggle="tab">Make Your Own
|
54 |
</ul>
|
55 |
|
56 |
<!-- Tab panes -->
|
@@ -86,44 +98,126 @@ a:visited {
|
|
86 |
The same can happen due to broken hardware or misconfiguration.
|
87 |
</p>
|
88 |
|
89 |
-
<
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
<p>
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
Another defense is replacing the naive averaging of the peers' gradients with an <b>aggregation technique robust to outliers</b>.
|
105 |
-
<a href="https://arxiv.org/abs/2012.10333">Karimireddy et al. (2020)</a>
|
106 |
-
suggested such a technique (named CenteredClip) and proved that it does not significantly affect the model's convergence.
|
107 |
-
</p>
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
Recently, <a href="https://arxiv.org/abs/2106.11257">Gorbunov et al. (2021)</a>
|
119 |
-
proposed a robust aggregation protocol for decentralized systems that does not require this assumption.
|
120 |
-
This protocol uses CenteredClip as a subroutine but is able to detect and ban participants who performed it incorrectly.
|
121 |
-
</p>
|
122 |
</div>
|
123 |
<div role="tabpanel" class="tab-pane" id="tab3">
|
124 |
-
<
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
</div>
|
128 |
</div>
|
129 |
|
|
|
32 |
font-family: -apple-system,BlinkMacSystemFont,Segoe UI,Helvetica,Arial,
|
33 |
sans-serif,Apple Color Emoji,Segoe UI Emoji;
|
34 |
}
|
35 |
+
.tab-group {
|
36 |
+
font-size: 16px;
|
37 |
+
}
|
38 |
+
.tab-content {
|
39 |
+
margin-top: 16px;
|
40 |
+
}
|
41 |
+
ul > li {
|
42 |
+
margin: 3px 0;
|
43 |
+
}
|
44 |
+
ol > li {
|
45 |
+
margin: 5px 0;
|
46 |
+
}
|
47 |
+
/* a:link {
|
48 |
color: #00194a;
|
49 |
text-decoration: none;
|
50 |
}
|
51 |
a:visited {
|
52 |
color: #3f004a;
|
53 |
text-decoration: none;
|
54 |
+
} */
|
55 |
</style>
|
56 |
</head>
|
57 |
<body>
|
58 |
|
59 |
+
<div class="tab-group" style="width: 100%; margin:0 auto;">
|
60 |
<div>
|
61 |
<!-- Nav tabs -->
|
62 |
<ul class="nav nav-tabs" role="tablist">
|
63 |
<li role="presentation" class="active"><a href="#tab1" aria-controls="tab1" role="tab" data-toggle="tab">"Efficient Training"</a></li>
|
64 |
<li role="presentation"><a href="#tab2" aria-controls="tab2" role="tab" data-toggle="tab">Security</a></li>
|
65 |
+
<li role="presentation"><a href="#tab3" aria-controls="tab3" role="tab" data-toggle="tab">Make Your Own</a></li>
|
66 |
</ul>
|
67 |
|
68 |
<!-- Tab panes -->
|
|
|
98 |
The same can happen due to broken hardware or misconfiguration.
|
99 |
</p>
|
100 |
|
101 |
+
<ul>
|
102 |
+
<li>
|
103 |
+
<p>
|
104 |
+
One possible defense is using <b>authentication</b> combined with <b>model checkpointing</b>.
|
105 |
+
In this case, participants should log in (e.g. with their Hugging Face account) to interact with the rest of the collaboration.
|
106 |
+
In turn, moderators can screen potential participants and add them to an allowlist.
|
107 |
+
If something goes wrong (e.g. if a participant sends invalid gradients and the model diverges),
|
108 |
+
the moderators remove them from the list and revert the model to the latest checkpoint unaffected by the attack.
|
109 |
+
</p>
|
110 |
|
111 |
+
<p><b>Spoiler: How to implement authentication in a decentralized system efficiently?</b></p>
|
112 |
|
113 |
+
<p>
|
114 |
+
Nice bonus: using this data, the moderators can acknowledge the personal contribution of each participant.
|
115 |
+
</p>
|
116 |
+
</li>
|
117 |
+
<li>
|
118 |
<p>
|
119 |
+
Another defense is replacing the naive averaging of the peers' gradients with an <b>aggregation technique robust to outliers</b>.
|
120 |
+
<a href="https://arxiv.org/abs/2012.10333">Karimireddy et al. (2020)</a>
|
121 |
+
suggested such a technique (named CenteredClip) and proved that it does not significantly affect the model's convergence.
|
122 |
+
</p>
|
123 |
|
124 |
+
<p><b>Spoiler: How does CenteredClip protect from outliers? (Interactive Demo)</b></p>
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
<p>
|
127 |
+
In our case, CenteredClip is useful but not enough to protect from malicious participants,
|
128 |
+
since it implies that the CenteredClip procedure itself is performed by a trusted server.
|
129 |
+
In contrast, in our decentralized system, all participants can aggregate a part of the gradients and we cannot assume all of them to be trusted.
|
130 |
+
</p>
|
131 |
|
132 |
+
<p>
|
133 |
+
Recently, <a href="https://arxiv.org/abs/2106.11257">Gorbunov et al. (2021)</a>
|
134 |
+
proposed a robust aggregation protocol for decentralized systems that does not require this assumption.
|
135 |
+
This protocol uses CenteredClip as a subroutine but is able to detect and ban participants who performed it incorrectly.
|
136 |
+
</p>
|
137 |
+
</li>
|
138 |
+
</ul>
|
|
|
|
|
|
|
|
|
139 |
</div>
|
140 |
<div role="tabpanel" class="tab-pane" id="tab3">
|
141 |
+
<ol>
|
142 |
+
<li>
|
143 |
+
Set up dataset streaming:
|
144 |
+
<ul>
|
145 |
+
<li>
|
146 |
+
<a href="https://huggingface.co/docs/datasets/share_dataset.html">Upload</a> your dataset to Hugging Face Hub
|
147 |
+
in a streaming-friendly format (<a href="https://huggingface.co/datasets/laion/laion_100m_vqgan_f8">example</a>).
|
148 |
+
</li>
|
149 |
+
<li>Set up dataset streaming (see the "Efficient Training" section).</li>
|
150 |
+
</ul>
|
151 |
+
</li>
|
152 |
+
<li>
|
153 |
+
Write code of training peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_trainer.py">example</a>):
|
154 |
+
<ul>
|
155 |
+
<li>Implement your model, set up dataset streaming, and write the training loop.</li>
|
156 |
+
<li>
|
157 |
+
Get familiar with the hivemind library
|
158 |
+
(e.g., via the <a href="https://learning-at-home.readthedocs.io/en/latest/user/quickstart.html">quickstart</a>).
|
159 |
+
</li>
|
160 |
+
<li>
|
161 |
+
In the training loop, wrap up your PyTorch optimizer with
|
162 |
+
<a href="https://learning-at-home.readthedocs.io/en/latest/modules/optim.html#hivemind.optim.experimental.optimizer.Optimizer">hivemind.Optimizer</a>
|
163 |
+
(<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/task.py#L121">example</a>).
|
164 |
+
</li>
|
165 |
+
</ul>
|
166 |
+
</li>
|
167 |
+
<li>
|
168 |
+
<b>(optional)</b> Write code of auxiliary peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_aux_peer.py">example</a>):
|
169 |
+
<ul>
|
170 |
+
<li>
|
171 |
+
It is convenient to create a special kind of peers responsible for
|
172 |
+
logging loss values and metrics (e.g. to <a href="https://wandb.ai/">Weights & Biases</a>)
|
173 |
+
and uploading model checkpoints (e.g. to Hugging Face Hub).
|
174 |
+
</li>
|
175 |
+
<li>
|
176 |
+
Such peers don't need to calculate gradients and may be run on cheap machines without GPUs.
|
177 |
+
</li>
|
178 |
+
<li>
|
179 |
+
They can serve as a convenient entry point to
|
180 |
+
<a href="https://learning-at-home.readthedocs.io/en/latest/modules/dht.html">hivemind.DHT</a>
|
181 |
+
(i.e., their address can be specified as <code>initial_peers</code>).
|
182 |
+
</li>
|
183 |
+
<li>
|
184 |
+
It is useful to fix their address by providing <code>host_maddrs</code> and <code>identity_path</code>
|
185 |
+
arguments to <code>hivemind.DHT</code>
|
186 |
+
(these are forwarded to the underlying <a href="https://libp2p.io/">libp2p</a> daemon).
|
187 |
+
</li>
|
188 |
+
</ul>
|
189 |
+
</li>
|
190 |
+
<li>
|
191 |
+
<b>(optional)</b> Make it easier for other people to join:
|
192 |
+
<ul>
|
193 |
+
<li>
|
194 |
+
Create notebooks for free GPU providers (Google Colab, Kaggle, AWS SageMaker, etc.).
|
195 |
+
People may run them online and/or download and run them on their own hardware.
|
196 |
+
</li>
|
197 |
+
<li>
|
198 |
+
<a href="https://huggingface.co/organizations/new">Create</a> a Hugging Face organization
|
199 |
+
with all resources related to the training
|
200 |
+
(dataset, model, inference demo, links to a dashboard with loss values and metrics, etc.).
|
201 |
+
Look at <a href="https://huggingface.co/training-transformers-together">ours</a> as an example.
|
202 |
+
</li>
|
203 |
+
<li>
|
204 |
+
Set up an authentication system (see the "Security" section).
|
205 |
+
For example, you can ask people to join your organization with their Hugging Face accounts
|
206 |
+
(Hugging Face allows to share a link for joining or manually approve new participants).
|
207 |
+
This allows you to screen participants,
|
208 |
+
acknowledge their contributions (e.g., make a leaderboard), and
|
209 |
+
ban accounts who behave maliciously.
|
210 |
+
</li>
|
211 |
+
<li>
|
212 |
+
Set up an inference demo for your model (e.g., using <a href="https://huggingface.co/spaces">Spaces</a>) or
|
213 |
+
a script that periodically uploads the inference results to show the training progress.
|
214 |
+
</li>
|
215 |
+
</ul>
|
216 |
+
</li>
|
217 |
+
</ol>
|
218 |
+
<p>
|
219 |
+
<b>Got confused?</b> Feel free to ask any questions at our <a href="https://discord.gg/uGugx9zYvN">Discord</a>!
|
220 |
+
</p>
|
221 |
</div>
|
222 |
</div>
|
223 |
|