robot-bengali-2 commited on
Commit
5c906aa
1 Parent(s): d6fba19

Fix minor things in tabs.html

Browse files
Files changed (2) hide show
  1. st_helpers.py +1 -1
  2. static/tabs.html +7 -7
st_helpers.py CHANGED
@@ -30,7 +30,7 @@ def make_header():
30
 
31
 
32
  def make_tabs():
33
- components.html(f"{tabs_html}", height=1000, scrolling=True)
34
 
35
 
36
  def make_footer():
 
30
 
31
 
32
  def make_tabs():
33
+ components.html(f"{tabs_html}", height=850, scrolling=True)
34
 
35
 
36
  def make_footer():
static/tabs.html CHANGED
@@ -33,7 +33,7 @@
33
  sans-serif,Apple Color Emoji,Segoe UI Emoji;
34
  }
35
  .tab-group {
36
- font-size: 16px;
37
  }
38
  .tab-content {
39
  margin-top: 16px;
@@ -110,7 +110,7 @@ a:visited {
110
  the moderators remove them from the list and revert the model to the latest checkpoint unaffected by the attack.
111
  </p>
112
 
113
- <p><b>Spoiler: How to implement authentication in a decentralized system efficiently?</b></p>
114
 
115
  <p>
116
  Nice bonus: using this data, the moderators can acknowledge the personal contribution of each participant.
@@ -123,7 +123,7 @@ a:visited {
123
  suggested such a technique (named CenteredClip) and proved that it does not significantly affect the model's convergence.
124
  </p>
125
 
126
- <p><b>Spoiler: How does CenteredClip protect from outliers? (Interactive Demo)</b></p>
127
 
128
  <p>
129
  In our case, CenteredClip is useful but not enough to protect from malicious participants,
@@ -174,9 +174,9 @@ a:visited {
174
  <b>(optional)</b> Write code of auxiliary peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_aux_peer.py">example</a>):
175
  <ul>
176
  <li>
177
- It is convenient to create a special kind of peers responsible for
178
- logging loss values and metrics (e.g. to <a href="https://wandb.ai/">Weights & Biases</a>)
179
- and uploading model checkpoints (e.g. to Hugging Face Hub).
180
  </li>
181
  <li>
182
  Such peers don't need to calculate gradients and may be run on cheap machines without GPUs.
@@ -203,7 +203,7 @@ a:visited {
203
  <li>
204
  <a href="https://huggingface.co/organizations/new">Create</a> a Hugging Face organization
205
  with all resources related to the training
206
- (dataset, model, inference demo, links to a dashboard with loss values and metrics, etc.).
207
  Look at <a href="https://huggingface.co/training-transformers-together">ours</a> as an example.
208
  </li>
209
  <li>
 
33
  sans-serif,Apple Color Emoji,Segoe UI Emoji;
34
  }
35
  .tab-group {
36
+ font-size: 15px;
37
  }
38
  .tab-content {
39
  margin-top: 16px;
 
110
  the moderators remove them from the list and revert the model to the latest checkpoint unaffected by the attack.
111
  </p>
112
 
113
+ <p><b>Spoiler (TODO): How to implement authentication in a decentralized system efficiently?</b></p>
114
 
115
  <p>
116
  Nice bonus: using this data, the moderators can acknowledge the personal contribution of each participant.
 
123
  suggested such a technique (named CenteredClip) and proved that it does not significantly affect the model's convergence.
124
  </p>
125
 
126
+ <p><b>Spoiler (TODO): How does CenteredClip protect from outliers? (Interactive Demo)</b></p>
127
 
128
  <p>
129
  In our case, CenteredClip is useful but not enough to protect from malicious participants,
 
174
  <b>(optional)</b> Write code of auxiliary peers (<a href="https://github.com/learning-at-home/dalle-hivemind/blob/main/run_aux_peer.py">example</a>):
175
  <ul>
176
  <li>
177
+ Auxiliary peers a special kind of peers responsible for
178
+ logging loss and other metrics (e.g., to <a href="https://wandb.ai/">Weights & Biases</a>)
179
+ and uploading model checkpoints (e.g., to <a href="https://huggingface.co/docs/transformers/model_sharing">Hugging Face Hub</a>).
180
  </li>
181
  <li>
182
  Such peers don't need to calculate gradients and may be run on cheap machines without GPUs.
 
203
  <li>
204
  <a href="https://huggingface.co/organizations/new">Create</a> a Hugging Face organization
205
  with all resources related to the training
206
+ (dataset, model, inference demo, links to a dashboard with loss and other metrics, etc.).
207
  Look at <a href="https://huggingface.co/training-transformers-together">ours</a> as an example.
208
  </li>
209
  <li>