File size: 3,104 Bytes
1540bd1
 
 
 
 
 
3384f62
1540bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547ef5d
93ccb6b
 
1540bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ccb6b
1540bd1
3384f62
1540bd1
3384f62
1540bd1
89553ed
3384f62
 
89553ed
3384f62
1540bd1
0f6388d
 
 
1540bd1
 
3384f62
1540bd1
3384f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540bd1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chat_models.openai import ChatOpenAI
from langchain import VectorDBQA
import pandas as pd
from variables import *

from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

from datetime import datetime as dt


if 'tlist' not in st.session_state:
    st.session_state['tlist'] = ''

system_template="""Use the following pieces of context to answer the users question. 
If you don't know the answer, just say that you don't know, don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
The "SOURCES" part should be a reference to the source of the document from which you got your answer.

Example of your response should be:

```
The answer is foo
SOURCES: xyz
```

Begin!
----------------
{context}"""
messages = [
    SystemMessagePromptTemplate.from_template(system_template),
    HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)

current_time = dt.strftime(dt.today(),'%d_%m_%Y_%H_%M')

st.markdown("## Financial Tweets GPT Search")

twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""

st.markdown(twitter_link)

bi_enc_dict = {'mpnet-base-v2':"sentence-transformers/all-mpnet-base-v2",
              'instructor-base': 'hkunlp/instructor-base'}

search_input = st.text_input(
        label='Enter Your Search Query',value= "What are the most topical risks?", key='search')
        
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')

tweets = ','.join(st.session_state['tlist'])

try:

    if search_input:
        
        model = bi_enc_dict[sbert_model_name]
                        
        with st.spinner(
            text=f"Loading {model} embedding model and Generating Response..."
        ):

            vectorstore = create_vectorstore(tweets,model)
            
            tweets = embed_tweets(search_input,prompt,vectorstore)


        references = [doc.page_content for doc in tweets['source_documents']]

        answer = tweets['result']
            
        ##### Sematic Search #####
        
        with st.expander(label='Query Result', expanded=True):
            st.write(answer)
            
        with st.expander(label='References from Corpus used to Generate Result'):
            for ref in references:
                st.write(ref)
            
    else:
    
        st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')  
        
except RuntimeError:
  
    st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')