Spaces:
Build error
Build error
Update pages/2_Twitter_GPT_Search.py
Browse files- pages/2_Twitter_GPT_Search.py +29 -27
pages/2_Twitter_GPT_Search.py
CHANGED
@@ -4,6 +4,7 @@ from langchain.vectorstores import FAISS
|
|
4 |
from langchain.chat_models.openai import ChatOpenAI
|
5 |
from langchain import VectorDBQA
|
6 |
import pandas as pd
|
|
|
7 |
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.prompts.chat import (
|
@@ -61,40 +62,41 @@ search_input = st.text_input(
|
|
61 |
|
62 |
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
|
63 |
|
64 |
-
|
65 |
-
tweets = f.read()
|
66 |
|
67 |
-
|
68 |
-
def process_tweets(file,embed_model,query):
|
69 |
-
'''Process file with latest tweets'''
|
70 |
|
71 |
-
|
72 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
73 |
-
texts = text_splitter.split_text(file)
|
74 |
-
|
75 |
-
model = bi_enc_dict[embed_model]
|
76 |
-
|
77 |
-
if model == "hkunlp/instructor-large":
|
78 |
-
emb = HuggingFaceInstructEmbeddings(model_name=model,
|
79 |
-
query_instruction='Represent the Financial question for retrieving supporting documents: ',
|
80 |
-
embed_instruction='Represent the Financial document for retrieval: ')
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
|
87 |
-
chain_type_kwargs = {"prompt": prompt}
|
88 |
-
chain = VectorDBQA.from_chain_type(
|
89 |
-
ChatOpenAI(temperature=0),
|
90 |
-
chain_type="stuff",
|
91 |
-
vectorstore=docsearch,
|
92 |
-
chain_type_kwargs=chain_type_kwargs
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
|
|
|
4 |
from langchain.chat_models.openai import ChatOpenAI
|
5 |
from langchain import VectorDBQA
|
6 |
import pandas as pd
|
7 |
+
from variables import *
|
8 |
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.prompts.chat import (
|
|
|
62 |
|
63 |
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
|
64 |
|
65 |
+
file = get_latest_file()
|
|
|
66 |
|
67 |
+
try:
|
|
|
|
|
68 |
|
69 |
+
if search_input:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
embedding_model = bi_enc_dict[sbert_model_name]
|
72 |
+
|
73 |
+
with st.spinner(
|
74 |
+
text=f"Loading {embedding_model} embedding model and Generating Response..."
|
75 |
+
):
|
76 |
|
77 |
+
tweets = process_tweets(file,sbert_model_name,search_input)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
references = [doc.page_content for doc in tweets['source_documents']]
|
81 |
|
82 |
+
answer = tweets['result']
|
83 |
+
|
84 |
+
##### Sematic Search #####
|
85 |
+
|
86 |
+
with st.expander(label='Query Result', expanded=True):
|
87 |
+
st.write(answer)
|
88 |
+
|
89 |
+
with st.expander(label='References from Corpus used to Generate Result'):
|
90 |
+
for ref in references:
|
91 |
+
st.write(ref)
|
92 |
+
|
93 |
+
else:
|
94 |
+
|
95 |
+
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|
96 |
+
|
97 |
+
except RuntimeError:
|
98 |
+
|
99 |
+
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')
|
100 |
|
101 |
|
102 |
|