Spaces:
Build error
Build error
Create 2_Twitter_GPT_Search.py
Browse files
pages/2_Twitter_GPT_Search.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.chat_models.openai import ChatOpenAI
|
5 |
+
from langchain import VectorDBQA
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.prompts.chat import (
|
10 |
+
ChatPromptTemplate,
|
11 |
+
SystemMessagePromptTemplate,
|
12 |
+
AIMessagePromptTemplate,
|
13 |
+
HumanMessagePromptTemplate,
|
14 |
+
)
|
15 |
+
from langchain.schema import (
|
16 |
+
AIMessage,
|
17 |
+
HumanMessage,
|
18 |
+
SystemMessage
|
19 |
+
)
|
20 |
+
|
21 |
+
from datetime import datetime as dt
|
22 |
+
|
23 |
+
st.set_page_config(page_title="Tweets Question/Answering with Langchain and OpenAI", page_icon="π")
|
24 |
+
|
25 |
+
system_template="""Use the following pieces of context to answer the users question.
|
26 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
27 |
+
ALWAYS return a "SOURCES" part in your answer.
|
28 |
+
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
29 |
+
|
30 |
+
Example of your response should be:
|
31 |
+
|
32 |
+
```
|
33 |
+
The answer is foo
|
34 |
+
SOURCES: xyz
|
35 |
+
```
|
36 |
+
|
37 |
+
Begin!
|
38 |
+
----------------
|
39 |
+
{context}"""
|
40 |
+
messages = [
|
41 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
42 |
+
HumanMessagePromptTemplate.from_template("{question}")
|
43 |
+
]
|
44 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
45 |
+
|
46 |
+
current_time = dt.strftime(dt.today(),'%d_%m_%Y_%H_%M')
|
47 |
+
|
48 |
+
st.markdown("## Financial Tweets GPT Search")
|
49 |
+
|
50 |
+
twitter_link = """
|
51 |
+
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
|
52 |
+
"""
|
53 |
+
|
54 |
+
st.markdown(twitter_link)
|
55 |
+
|
56 |
+
bi_enc_dict = {'mpnet-base-v2':"sentence-transformers/all-mpnet-base-v2",
|
57 |
+
'instructor-base': 'hkunlp/instructor-base'}
|
58 |
+
|
59 |
+
search_input = st.text_input(
|
60 |
+
label='Enter Your Search Query',value= "What are the most topical risks?", key='search')
|
61 |
+
|
62 |
+
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=list(bi_enc_dict.keys()), key='sbox')
|
63 |
+
|
64 |
+
with open('tweets.txt') as f:
|
65 |
+
tweets = f.read()
|
66 |
+
|
67 |
+
def process_tweets(file,embed_model,query):
|
68 |
+
'''Process file with latest tweets'''
|
69 |
+
|
70 |
+
# Split tweets int chunks
|
71 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
72 |
+
texts = text_splitter.split_text(file)
|
73 |
+
|
74 |
+
model = bi_enc_dict[embed_model]
|
75 |
+
|
76 |
+
if model == "hkunlp/instructor-large":
|
77 |
+
emb = HuggingFaceInstructEmbeddings(model_name=model,
|
78 |
+
query_instruction='Represent the Financial question for retrieving supporting documents: ',
|
79 |
+
embed_instruction='Represent the Financial document for retrieval: ')
|
80 |
+
|
81 |
+
elif model == "sentence-transformers/all-mpnet-base-v2":
|
82 |
+
emb = HuggingFaceEmbeddings(model_name=model)
|
83 |
+
|
84 |
+
docsearch = FAISS.from_texts(texts, emb)
|
85 |
+
|
86 |
+
chain_type_kwargs = {"prompt": prompt}
|
87 |
+
chain = VectorDBQA.from_chain_type(
|
88 |
+
ChatOpenAI(temperature=0),
|
89 |
+
chain_type="stuff",
|
90 |
+
vectorstore=docsearch,
|
91 |
+
chain_type_kwargs=chain_type_kwargs
|
92 |
+
)
|
93 |
+
|
94 |
+
result = chain({"query": query}, return_only_outputs=True)
|
95 |
+
|
96 |
+
return result
|
97 |
+
|
98 |
+
|
99 |
+
|