Spaces:
Running
Running
File size: 13,688 Bytes
0c7d7d0 3573a39 9e4233f 3573a39 9e4233f 35be7f4 8e32a09 77961b6 7f86019 db8ac73 3573a39 45c5476 7f86019 45c5476 35be7f4 9e4233f fdffa47 5b8d6d5 fdffa47 2694247 5b8d6d5 fdffa47 5b8d6d5 2694247 5b8d6d5 02f1357 fdffa47 9e4233f 3573a39 35be7f4 3573a39 fdffa47 9e4233f 35be7f4 3573a39 35be7f4 7f86019 2694247 7f86019 2694247 7f86019 2694247 7f86019 35be7f4 9e4233f 3573a39 77961b6 58c39e0 77961b6 3573a39 77961b6 3a0ee14 77961b6 3573a39 3a0ee14 3573a39 0c7d7d0 3573a39 0c7d7d0 3573a39 9e4233f 3573a39 3a0ee14 77961b6 3a0ee14 9e4233f 77961b6 3573a39 77961b6 3573a39 9e4233f 3a0ee14 3573a39 9e4233f 3573a39 9e4233f 0c7d7d0 d65e913 0c7d7d0 77961b6 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 77961b6 3573a39 9e4233f 3573a39 9e4233f 0607989 9e4233f 7f86019 3573a39 0607989 9e4233f 0607989 9e4233f 7f86019 9e4233f 0607989 35be7f4 7f86019 35be7f4 9e4233f 45c5476 7f86019 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3573a39 9e4233f 3a0ee14 3573a39 3a0ee14 9e4233f 0c7d7d0 3573a39 9e4233f 77961b6 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 9e4233f 3573a39 5f9a95f 7055d8b 0607989 db8ac73 0607989 7055d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import json
import logging
import datasets
import huggingface_hub
import pandas as pd
from transformers import pipeline
import requests
import os
from app_env import HF_WRITE_TOKEN
logger = logging.getLogger(__name__)
AUTH_CHECK_URL = "https://huggingface.co/api/whoami-v2"
logger = logging.getLogger(__file__)
class HuggingFaceInferenceAPIResponse:
def __init__(self, message):
self.message = message
def get_labels_and_features_from_dataset(ds):
try:
dataset_features = ds.features
label_keys = [i for i in dataset_features.keys() if i.startswith("label")]
features = [f for f in dataset_features.keys() if not f.startswith("label")]
if len(label_keys) == 0: # no labels found
# return everything for post processing
return list(dataset_features.keys()), list(dataset_features.keys()), None
labels = None
if not isinstance(dataset_features[label_keys[0]], datasets.ClassLabel):
if hasattr(dataset_features[label_keys[0]], "feature"):
label_feat = dataset_features[label_keys[0]].feature
labels = label_feat.names
else:
labels = ds.unique(label_keys[0])
else:
labels = dataset_features[label_keys[0]].names
return labels, features, label_keys
except Exception as e:
logging.warning(
f"Get Labels/Features Failed for dataset: {e}"
)
return None, None, None
def check_model_task(model_id):
# check if model is valid on huggingface
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
if task is None:
return None
return task
except Exception:
return None
def get_model_labels(model_id, example_input):
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
payload = {"inputs": example_input, "options": {"use_cache": True}}
response = hf_inference_api(model_id, hf_token, payload)
if "error" in response:
return None
return extract_from_response(response, "label")
def extract_from_response(data, key):
results = []
if isinstance(data, dict):
res = data.get(key)
if res is not None:
results.append(res)
for value in data.values():
results.extend(extract_from_response(value, key))
elif isinstance(data, list):
for element in data:
results.extend(extract_from_response(element, key))
return results
def hf_inference_api(model_id, hf_token, payload):
hf_inference_api_endpoint = os.environ.get(
"HF_INFERENCE_ENDPOINT", default="https://api-inference.huggingface.co"
)
url = f"{hf_inference_api_endpoint}/models/{model_id}"
headers = {"Authorization": f"Bearer {hf_token}"}
response = requests.post(url, headers=headers, json=payload)
if not hasattr(response, "status_code") or response.status_code != 200:
logger.warning(f"Request to inference API returns {response}")
try:
output = response.json()
if "error" in output and "Input is too long" in output["error"]:
payload.update({"parameters": {"truncation": True, "max_length": 512}})
response = requests.post(url, headers=headers, json=payload)
if not hasattr(response, "status_code") or response.status_code != 200:
logger.warning(f"Request to inference API returns {response}")
return response.json()
except Exception:
return {"error": response.content}
def preload_hf_inference_api(model_id):
payload = {"inputs": "This is a test", "options": {"use_cache": True, }}
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
hf_inference_api(model_id, hf_token, payload)
def check_model_pipeline(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None
try:
ppl = pipeline(task=task, model=model_id)
return ppl
except Exception:
return None
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
for model_label in id2label_mapping.keys():
if model_label.upper() == label.upper():
return model_label, label
return None, label
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
dataset_labels = None
for feature in dataset_features.values():
if not isinstance(feature, datasets.ClassLabel):
continue
if len(feature.names) != len(id2label_mapping.keys()):
continue
dataset_labels = feature.names
# Try to match labels
for label in feature.names:
if label in id2label_mapping.keys():
model_label = label
else:
# Try to find case unsensative
model_label, label = text_classificaiton_match_label_case_unsensative(
id2label_mapping, label
)
if model_label is not None:
id2label_mapping[model_label] = label
else:
print(f"Label {label} is not found in model labels")
return id2label_mapping, dataset_labels
"""
params:
column_mapping: dict
example: {
"text": "sentences",
"label": {
"label0": "LABEL_0",
"label1": "LABEL_1"
}
}
ppl: pipeline
"""
def check_column_mapping_keys_validity(column_mapping, ppl):
# get the element in all the list elements
column_mapping = json.loads(column_mapping)
if "data" not in column_mapping.keys():
return True
user_labels = set([pair[0] for pair in column_mapping["data"]])
model_labels = set([pair[1] for pair in column_mapping["data"]])
id2label = ppl.model.config.id2label
original_labels = set(id2label.values())
return user_labels == model_labels == original_labels
"""
params:
column_mapping: dict
dataset_features: dict
example: {
'text': Value(dtype='string', id=None),
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
}
"""
def infer_text_input_column(column_mapping, dataset_features):
# Check whether we need to infer the text input column
infer_text_input_column = True
feature_map_df = None
if "text" in column_mapping.keys():
dataset_text_column = column_mapping["text"]
if dataset_text_column in dataset_features.keys():
infer_text_input_column = False
else:
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
if infer_text_input_column:
# Try to retrieve one
candidates = [
f for f in dataset_features if dataset_features[f].dtype == "string"
]
feature_map_df = pd.DataFrame(
{"Dataset Features": [candidates[0]], "Model Input Features": ["text"]}
)
if len(candidates) > 0:
logging.debug(f"Candidates are {candidates}")
column_mapping["text"] = candidates[0]
return column_mapping, feature_map_df
"""
params:
column_mapping: dict
id2label_mapping: dict
example:
id2label_mapping: {
'negative': 'negative',
'neutral': 'neutral',
'positive': 'positive'
}
"""
def infer_output_label_column(
column_mapping, id2label_mapping, id2label, dataset_labels
):
# Check whether we need to infer the output label column
if "data" in column_mapping.keys():
if isinstance(column_mapping["data"], list):
# Use the column mapping passed by user
for user_label, model_label in column_mapping["data"]:
id2label_mapping[model_label] = user_label
elif None in id2label_mapping.values():
column_mapping["label"] = {i: None for i in id2label.keys()}
return column_mapping, None
if "data" not in column_mapping.keys():
# Column mapping should contain original model labels
column_mapping["label"] = {
str(i): id2label_mapping[label]
for i, label in zip(id2label.keys(), dataset_labels)
}
id2label_df = pd.DataFrame(
{
"Dataset Labels": dataset_labels,
"Model Prediction Labels": [
id2label_mapping[label] for label in dataset_labels
],
}
)
return column_mapping, id2label_df
def check_dataset_features_validity(d_id, config, split):
# We assume dataset is ok here
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
try:
dataset_features = ds.features
except AttributeError:
# Dataset does not have features, need to provide everything
return None, None
# Load dataset as DataFrame
df = ds.to_pandas()
return df, dataset_features
def select_the_first_string_column(ds):
for feature in ds.features.keys():
if isinstance(ds[0][feature], str):
return feature
return None
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split, hf_token):
# get a sample prediction from the model on the dataset
prediction_input = None
prediction_result = None
try:
# Use the first item to test prediction
ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
if "text" not in ds.features.keys():
# Dataset does not have text column
prediction_input = ds[0][select_the_first_string_column(ds)]
else:
prediction_input = ds[0]["text"]
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
results = hf_inference_api(model_id, hf_token, payload)
if isinstance(results, dict) and "error" in results.keys():
if "estimated_time" in results.keys():
return prediction_input, HuggingFaceInferenceAPIResponse(
f"Estimated time: {int(results['estimated_time'])}s. Please try again later.")
return prediction_input, HuggingFaceInferenceAPIResponse(
f"Inference Error: {results['error']}.")
while isinstance(results, list):
if isinstance(results[0], dict):
break
results = results[0]
prediction_result = {
f'{result["label"]}': result["score"] for result in results
}
except Exception as e:
# inference api prediction failed, show the error message
logger.error(f"Get example prediction failed {e}")
return prediction_input, None
return prediction_input, prediction_result
def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
# get a sample prediction from the model on the dataset
prediction_input = None
prediction_result = None
try:
# Use the first item to test prediction
prediction_input = df.head(1).at[0, column_mapping["text"]]
results = ppl({"text": prediction_input}, top_k=None)
prediction_result = {
f'{result["label"]}': result["score"] for result in results
}
except Exception:
# Pipeline prediction failed, need to provide labels
return prediction_input, None
# Display results in original label and mapped label
prediction_result = {
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
"score"
]
for result in results
}
return prediction_input, prediction_result
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
# load dataset as pd DataFrame
# get features column from dataset
df, dataset_features = check_dataset_features_validity(d_id, config, split)
column_mapping, feature_map_df = infer_text_input_column(
column_mapping, dataset_features
)
if feature_map_df is None:
# dataset does not have any features
return None, None, None, None, None
# Retrieve all labels
id2label = ppl.model.config.id2label
# Infer labels
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
id2label, dataset_features
)
column_mapping, id2label_df = infer_output_label_column(
column_mapping, id2label_mapping, id2label, dataset_labels
)
if id2label_df is None:
# does not able to infer output label column
return column_mapping, None, None, None, feature_map_df
# Get a sample prediction
prediction_input, prediction_result = get_sample_prediction(
ppl, df, column_mapping, id2label_mapping
)
if prediction_result is None:
# does not able to get a sample prediction
return column_mapping, prediction_input, None, id2label_df, feature_map_df
return (
column_mapping,
prediction_input,
prediction_result,
id2label_df,
feature_map_df,
)
def strip_model_id_from_url(model_id):
if model_id.startswith("https://huggingface.co/"):
return "/".join(model_id.split("/")[-2:])
return model_id
def check_hf_token_validity(hf_token):
if hf_token == "":
return False
if not isinstance(hf_token, str):
return False
# use huggingface api to check the token
headers = {"Authorization": f"Bearer {hf_token}"}
response = requests.get(AUTH_CHECK_URL, headers=headers)
if response.status_code != 200:
return False
return True |