Spaces:
Running
GSK-2774-GSK-2771-GSK-2772 (#101)
Browse files- remove overused warnings & fix wording & prevent un-matchable models and datasets submissions (f9983aba4d3aaf2e17a17669a4086819e65c09ae)
- add job id and rephrase (ed207aeeb43f12280829553f761cc837273da1ac)
- fix bypassing validation possibility (1ead652bc86135baf9fa7b42b391b649a951960a)
- add trust remote code param for dataset with scripts (52ba35194688f68a903fc477676209e2d3aa2708)
- add trust remote code to get dataset config names (4b5940140b89343e08e95bbe6ce2bb7f0b4c753b)
- add persistent error code when number of labels not matching (c680d9a2f682bf992e6753ec3aebb2ffe9938de3)
- add wording for guiding user to find the report (8a71b006571950be12c658575f5633127dc6fd9d)
- add hf token validation (346fe42776f7ce2da20956a78170c6d81f1820fd)
- add error msg for token invalid (20294008e5d228049c136e3fe9013feb27694bec)
- change hf token valid wording style (0c7a6488ba03aa0b9768118cc9c1e71865448e8c)
- wrap hf dataset error (55c122a303573ff10da3b52213a1158c7e7fc66e)
- app_leaderboard.py +1 -1
- app_text_classification.py +33 -6
- fetch_utils.py +2 -2
- text_classification.py +17 -6
- text_classification_ui_helpers.py +31 -16
- wordings.py +23 -4
@@ -21,7 +21,7 @@ def get_records_from_dataset_repo(dataset_id):
|
|
21 |
logger.info(f"Dataset {dataset_id} has splits {dataset_split}")
|
22 |
|
23 |
try:
|
24 |
-
ds = datasets.load_dataset(dataset_id, dataset_config[0]
|
25 |
df = ds.to_pandas()
|
26 |
return df
|
27 |
except Exception as e:
|
|
|
21 |
logger.info(f"Dataset {dataset_id} has splits {dataset_split}")
|
22 |
|
23 |
try:
|
24 |
+
ds = datasets.load_dataset(dataset_id, dataset_config[0], split=dataset_split[0])
|
25 |
df = ds.to_pandas()
|
26 |
return df
|
27 |
except Exception as e:
|
@@ -2,7 +2,7 @@ import uuid
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from io_utils import
|
6 |
from text_classification_ui_helpers import (
|
7 |
get_related_datasets_from_leaderboard,
|
8 |
align_columns_and_show_prediction,
|
@@ -11,7 +11,19 @@ from text_classification_ui_helpers import (
|
|
11 |
try_submit,
|
12 |
write_column_mapping_to_config,
|
13 |
)
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
MAX_LABELS = 40
|
17 |
MAX_FEATURES = 20
|
@@ -89,6 +101,13 @@ def get_demo():
|
|
89 |
visible=True,
|
90 |
interactive=True,
|
91 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
94 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
@@ -96,7 +115,7 @@ def get_demo():
|
|
96 |
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
|
97 |
def get_scanners(uid):
|
98 |
selected = read_scanners(uid)
|
99 |
-
#
|
100 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
101 |
# when using inference API, causing rate limit error
|
102 |
scan_config = selected + ["data_leakage"]
|
@@ -114,8 +133,8 @@ def get_demo():
|
|
114 |
|
115 |
with gr.Row():
|
116 |
logs = gr.Textbox(
|
117 |
-
value=
|
118 |
-
label="Giskard Bot Evaluation
|
119 |
visible=False,
|
120 |
every=0.5,
|
121 |
)
|
@@ -135,7 +154,7 @@ def get_demo():
|
|
135 |
)
|
136 |
|
137 |
gr.on(
|
138 |
-
triggers=[dataset_id_input.
|
139 |
fn=check_dataset,
|
140 |
inputs=[dataset_id_input],
|
141 |
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
@@ -223,6 +242,14 @@ def get_demo():
|
|
223 |
return gr.update(interactive=False)
|
224 |
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
225 |
return gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
return gr.update(interactive=True)
|
227 |
|
228 |
gr.on(
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from io_utils import read_scanners, write_scanners
|
6 |
from text_classification_ui_helpers import (
|
7 |
get_related_datasets_from_leaderboard,
|
8 |
align_columns_and_show_prediction,
|
|
|
11 |
try_submit,
|
12 |
write_column_mapping_to_config,
|
13 |
)
|
14 |
+
|
15 |
+
from text_classification import (
|
16 |
+
get_example_prediction,
|
17 |
+
check_hf_token_validity,
|
18 |
+
HuggingFaceInferenceAPIResponse
|
19 |
+
)
|
20 |
+
from wordings import (
|
21 |
+
CONFIRM_MAPPING_DETAILS_MD,
|
22 |
+
INTRODUCTION_MD,
|
23 |
+
USE_INFERENCE_API_TIP,
|
24 |
+
CHECK_LOG_SECTION_RAW,
|
25 |
+
HF_TOKEN_INVALID_STYLED
|
26 |
+
)
|
27 |
|
28 |
MAX_LABELS = 40
|
29 |
MAX_FEATURES = 20
|
|
|
101 |
visible=True,
|
102 |
interactive=True,
|
103 |
)
|
104 |
+
inference_token_info = gr.HTML(value=HF_TOKEN_INVALID_STYLED, visible=False)
|
105 |
+
|
106 |
+
inference_token.change(
|
107 |
+
lambda token: gr.update(visible=lambda: check_hf_token_validity(token)),
|
108 |
+
inputs=[inference_token],
|
109 |
+
outputs=[inference_token_info],
|
110 |
+
)
|
111 |
|
112 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
113 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
|
|
115 |
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
|
116 |
def get_scanners(uid):
|
117 |
selected = read_scanners(uid)
|
118 |
+
# we remove data_leakage from the default scanners
|
119 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
120 |
# when using inference API, causing rate limit error
|
121 |
scan_config = selected + ["data_leakage"]
|
|
|
133 |
|
134 |
with gr.Row():
|
135 |
logs = gr.Textbox(
|
136 |
+
value=CHECK_LOG_SECTION_RAW,
|
137 |
+
label="Giskard Bot Evaluation Guide:",
|
138 |
visible=False,
|
139 |
every=0.5,
|
140 |
)
|
|
|
154 |
)
|
155 |
|
156 |
gr.on(
|
157 |
+
triggers=[dataset_id_input.change],
|
158 |
fn=check_dataset,
|
159 |
inputs=[dataset_id_input],
|
160 |
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
|
|
242 |
return gr.update(interactive=False)
|
243 |
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
244 |
return gr.update(interactive=False)
|
245 |
+
if not column_mapping_accordion.visible:
|
246 |
+
return gr.update(interactive=False)
|
247 |
+
_, prediction_response = get_example_prediction(
|
248 |
+
model_id, dataset_id, dataset_config, dataset_split, inference_token
|
249 |
+
)
|
250 |
+
if not isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
251 |
+
gr.warning("Your HF token is invalid. Please check your token.")
|
252 |
+
return gr.update(interactive=False)
|
253 |
return gr.update(interactive=True)
|
254 |
|
255 |
gr.on(
|
@@ -5,7 +5,7 @@ import datasets
|
|
5 |
|
6 |
def check_dataset_and_get_config(dataset_id):
|
7 |
try:
|
8 |
-
configs = datasets.get_dataset_config_names(dataset_id)
|
9 |
return configs
|
10 |
except Exception:
|
11 |
# Dataset may not exist
|
@@ -14,7 +14,7 @@ def check_dataset_and_get_config(dataset_id):
|
|
14 |
|
15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
16 |
try:
|
17 |
-
ds = datasets.load_dataset(dataset_id, dataset_config)
|
18 |
except Exception as e:
|
19 |
# Dataset may not exist
|
20 |
logging.warning(
|
|
|
5 |
|
6 |
def check_dataset_and_get_config(dataset_id):
|
7 |
try:
|
8 |
+
configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
|
9 |
return configs
|
10 |
except Exception:
|
11 |
# Dataset may not exist
|
|
|
14 |
|
15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
16 |
try:
|
17 |
+
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
|
18 |
except Exception as e:
|
19 |
# Dataset may not exist
|
20 |
logging.warning(
|
@@ -254,7 +254,7 @@ def infer_output_label_column(
|
|
254 |
|
255 |
def check_dataset_features_validity(d_id, config, split):
|
256 |
# We assume dataset is ok here
|
257 |
-
ds = datasets.load_dataset(d_id, config)
|
258 |
try:
|
259 |
dataset_features = ds.features
|
260 |
except AttributeError:
|
@@ -272,20 +272,19 @@ def select_the_first_string_column(ds):
|
|
272 |
return None
|
273 |
|
274 |
|
275 |
-
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
276 |
# get a sample prediction from the model on the dataset
|
277 |
prediction_input = None
|
278 |
prediction_result = None
|
279 |
try:
|
280 |
# Use the first item to test prediction
|
281 |
-
ds = datasets.load_dataset(dataset_id, dataset_config)
|
282 |
if "text" not in ds.features.keys():
|
283 |
# Dataset does not have text column
|
284 |
prediction_input = ds[0][select_the_first_string_column(ds)]
|
285 |
else:
|
286 |
prediction_input = ds[0]["text"]
|
287 |
-
|
288 |
-
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
289 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
290 |
results = hf_inference_api(model_id, hf_token, payload)
|
291 |
|
@@ -381,4 +380,16 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
381 |
def strip_model_id_from_url(model_id):
|
382 |
if model_id.startswith("https://huggingface.co/"):
|
383 |
return "/".join(model_id.split("/")[-2])
|
384 |
-
return model_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
def check_dataset_features_validity(d_id, config, split):
|
256 |
# We assume dataset is ok here
|
257 |
+
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
258 |
try:
|
259 |
dataset_features = ds.features
|
260 |
except AttributeError:
|
|
|
272 |
return None
|
273 |
|
274 |
|
275 |
+
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split, hf_token):
|
276 |
# get a sample prediction from the model on the dataset
|
277 |
prediction_input = None
|
278 |
prediction_result = None
|
279 |
try:
|
280 |
# Use the first item to test prediction
|
281 |
+
ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
|
282 |
if "text" not in ds.features.keys():
|
283 |
# Dataset does not have text column
|
284 |
prediction_input = ds[0][select_the_first_string_column(ds)]
|
285 |
else:
|
286 |
prediction_input = ds[0]["text"]
|
287 |
+
|
|
|
288 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
289 |
results = hf_inference_api(model_id, hf_token, payload)
|
290 |
|
|
|
380 |
def strip_model_id_from_url(model_id):
|
381 |
if model_id.startswith("https://huggingface.co/"):
|
382 |
return "/".join(model_id.split("/")[-2])
|
383 |
+
return model_id
|
384 |
+
|
385 |
+
def check_hf_token_validity(hf_token):
|
386 |
+
if hf_token == "":
|
387 |
+
return False
|
388 |
+
if not isinstance(hf_token, str):
|
389 |
+
return False
|
390 |
+
# use inference api to check the token
|
391 |
+
payload = {"inputs": "This is a test", "options": {"use_cache": True}}
|
392 |
+
response = hf_inference_api("cardiffnlp/twitter-roberta-base-sentiment-latest", hf_token, payload)
|
393 |
+
if "error" in response:
|
394 |
+
return False
|
395 |
+
return True
|
@@ -23,8 +23,12 @@ from wordings import (
|
|
23 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
24 |
MAPPING_STYLED_ERROR_WARNING,
|
25 |
NOT_TEXT_CLASSIFICATION_MODEL_RAW,
|
|
|
|
|
26 |
get_styled_input,
|
|
|
27 |
)
|
|
|
28 |
|
29 |
MAX_LABELS = 40
|
30 |
MAX_FEATURES = 20
|
@@ -41,7 +45,7 @@ def get_related_datasets_from_leaderboard(model_id):
|
|
41 |
if len(datasets_unique) == 0:
|
42 |
return gr.update(choices=[], value="")
|
43 |
|
44 |
-
return gr.update(choices=datasets_unique, value=
|
45 |
|
46 |
|
47 |
logger = logging.getLogger(__file__)
|
@@ -50,18 +54,16 @@ logger = logging.getLogger(__file__)
|
|
50 |
def check_dataset(dataset_id):
|
51 |
logger.info(f"Loading {dataset_id}")
|
52 |
try:
|
53 |
-
configs = datasets.get_dataset_config_names(dataset_id)
|
54 |
if len(configs) == 0:
|
55 |
return (
|
56 |
gr.update(),
|
57 |
gr.update(),
|
58 |
""
|
59 |
)
|
60 |
-
splits =
|
61 |
-
|
62 |
-
|
63 |
-
).keys()
|
64 |
-
)
|
65 |
return (
|
66 |
gr.update(choices=configs, value=configs[0], visible=True),
|
67 |
gr.update(choices=splits, value=splits[0], visible=True),
|
@@ -69,6 +71,8 @@ def check_dataset(dataset_id):
|
|
69 |
)
|
70 |
except Exception as e:
|
71 |
logger.warn(f"Check your dataset {dataset_id}: {e}")
|
|
|
|
|
72 |
return (
|
73 |
gr.update(),
|
74 |
gr.update(),
|
@@ -174,7 +178,7 @@ def precheck_model_ds_enable_example_btn(
|
|
174 |
return (gr.update(), gr.update(), "")
|
175 |
|
176 |
try:
|
177 |
-
ds = datasets.load_dataset(dataset_id, dataset_config)
|
178 |
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
|
179 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
|
180 |
|
@@ -185,7 +189,7 @@ def precheck_model_ds_enable_example_btn(
|
|
185 |
return (gr.update(interactive=True), gr.update(value=df, visible=True), "")
|
186 |
except Exception as e:
|
187 |
# Config or split wrong
|
188 |
-
|
189 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
190 |
|
191 |
|
@@ -214,9 +218,11 @@ def align_columns_and_show_prediction(
|
|
214 |
dropdown_placement = [
|
215 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
216 |
]
|
|
|
|
|
217 |
|
218 |
prediction_input, prediction_response = get_example_prediction(
|
219 |
-
model_id, dataset_id, dataset_config, dataset_split
|
220 |
)
|
221 |
|
222 |
if prediction_input is None or prediction_response is None:
|
@@ -241,7 +247,7 @@ def align_columns_and_show_prediction(
|
|
241 |
|
242 |
model_labels = list(prediction_response.keys())
|
243 |
|
244 |
-
ds = datasets.load_dataset(dataset_id, dataset_config)
|
245 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
246 |
|
247 |
# when dataset does not have labels or features
|
@@ -255,6 +261,16 @@ def align_columns_and_show_prediction(
|
|
255 |
"",
|
256 |
*dropdown_placement,
|
257 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
column_mappings = list_labels_and_features_from_dataset(
|
260 |
ds_labels,
|
@@ -301,10 +317,10 @@ def check_column_mapping_keys_validity(all_mappings):
|
|
301 |
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
302 |
label_mapping = {}
|
303 |
if len(all_mappings["labels"].keys()) != len(ds_labels):
|
304 |
-
|
305 |
|
306 |
if len(all_mappings["features"].keys()) != len(ds_features):
|
307 |
-
|
308 |
|
309 |
for i, label in zip(range(len(ds_labels)), ds_labels):
|
310 |
# align the saved labels with dataset labels order
|
@@ -315,13 +331,12 @@ def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
|
315 |
feature_mapping = all_mappings["features"]
|
316 |
return label_mapping, feature_mapping
|
317 |
|
318 |
-
|
319 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
320 |
all_mappings = read_column_mapping(uid)
|
321 |
check_column_mapping_keys_validity(all_mappings)
|
322 |
|
323 |
# get ds labels and features again for alignment
|
324 |
-
ds = datasets.load_dataset(d_id, config)
|
325 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
326 |
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
|
327 |
|
@@ -346,6 +361,6 @@ def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
|
346 |
|
347 |
return (
|
348 |
gr.update(interactive=False), # Submit button
|
349 |
-
gr.update(lines=5, visible=True, interactive=False),
|
350 |
uuid.uuid4(), # Allocate a new uuid
|
351 |
)
|
|
|
23 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
24 |
MAPPING_STYLED_ERROR_WARNING,
|
25 |
NOT_TEXT_CLASSIFICATION_MODEL_RAW,
|
26 |
+
UNMATCHED_MODEL_DATASET_STYLED_ERROR,
|
27 |
+
CHECK_LOG_SECTION_RAW,
|
28 |
get_styled_input,
|
29 |
+
get_dataset_fetch_error_raw,
|
30 |
)
|
31 |
+
import os
|
32 |
|
33 |
MAX_LABELS = 40
|
34 |
MAX_FEATURES = 20
|
|
|
45 |
if len(datasets_unique) == 0:
|
46 |
return gr.update(choices=[], value="")
|
47 |
|
48 |
+
return gr.update(choices=datasets_unique, value="")
|
49 |
|
50 |
|
51 |
logger = logging.getLogger(__file__)
|
|
|
54 |
def check_dataset(dataset_id):
|
55 |
logger.info(f"Loading {dataset_id}")
|
56 |
try:
|
57 |
+
configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
|
58 |
if len(configs) == 0:
|
59 |
return (
|
60 |
gr.update(),
|
61 |
gr.update(),
|
62 |
""
|
63 |
)
|
64 |
+
splits = datasets.get_dataset_split_names(
|
65 |
+
dataset_id, configs[0], trust_remote_code=True
|
66 |
+
)
|
|
|
|
|
67 |
return (
|
68 |
gr.update(choices=configs, value=configs[0], visible=True),
|
69 |
gr.update(choices=splits, value=splits[0], visible=True),
|
|
|
71 |
)
|
72 |
except Exception as e:
|
73 |
logger.warn(f"Check your dataset {dataset_id}: {e}")
|
74 |
+
if "forbidden" in str(e).lower(): # GSK-2770
|
75 |
+
gr.warning(get_dataset_fetch_error_raw(e))
|
76 |
return (
|
77 |
gr.update(),
|
78 |
gr.update(),
|
|
|
178 |
return (gr.update(), gr.update(), "")
|
179 |
|
180 |
try:
|
181 |
+
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
|
182 |
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
|
183 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
|
184 |
|
|
|
189 |
return (gr.update(interactive=True), gr.update(value=df, visible=True), "")
|
190 |
except Exception as e:
|
191 |
# Config or split wrong
|
192 |
+
logger.warn(f"Check your dataset {dataset_id} and config {dataset_config} on split {dataset_split}: {e}")
|
193 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
194 |
|
195 |
|
|
|
218 |
dropdown_placement = [
|
219 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
220 |
]
|
221 |
+
|
222 |
+
hf_token = os.environ.get("HF_WRITE_TOKEN", default="")
|
223 |
|
224 |
prediction_input, prediction_response = get_example_prediction(
|
225 |
+
model_id, dataset_id, dataset_config, dataset_split, hf_token
|
226 |
)
|
227 |
|
228 |
if prediction_input is None or prediction_response is None:
|
|
|
247 |
|
248 |
model_labels = list(prediction_response.keys())
|
249 |
|
250 |
+
ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
|
251 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
252 |
|
253 |
# when dataset does not have labels or features
|
|
|
261 |
"",
|
262 |
*dropdown_placement,
|
263 |
)
|
264 |
+
|
265 |
+
if len(ds_labels) != len(model_labels):
|
266 |
+
return (
|
267 |
+
gr.update(value=UNMATCHED_MODEL_DATASET_STYLED_ERROR, visible=True),
|
268 |
+
gr.update(visible=False),
|
269 |
+
gr.update(visible=False, open=False),
|
270 |
+
gr.update(interactive=False),
|
271 |
+
"",
|
272 |
+
*dropdown_placement,
|
273 |
+
)
|
274 |
|
275 |
column_mappings = list_labels_and_features_from_dataset(
|
276 |
ds_labels,
|
|
|
317 |
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
318 |
label_mapping = {}
|
319 |
if len(all_mappings["labels"].keys()) != len(ds_labels):
|
320 |
+
logger.warn("Label mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
321 |
|
322 |
if len(all_mappings["features"].keys()) != len(ds_features):
|
323 |
+
logger.warn("Feature mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
324 |
|
325 |
for i, label in zip(range(len(ds_labels)), ds_labels):
|
326 |
# align the saved labels with dataset labels order
|
|
|
331 |
feature_mapping = all_mappings["features"]
|
332 |
return label_mapping, feature_mapping
|
333 |
|
|
|
334 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
335 |
all_mappings = read_column_mapping(uid)
|
336 |
check_column_mapping_keys_validity(all_mappings)
|
337 |
|
338 |
# get ds labels and features again for alignment
|
339 |
+
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
340 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
341 |
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
|
342 |
|
|
|
361 |
|
362 |
return (
|
363 |
gr.update(interactive=False), # Submit button
|
364 |
+
gr.update(value=f"{CHECK_LOG_SECTION_RAW}Your job id is: {uid}. ", lines=5, visible=True, interactive=False),
|
365 |
uuid.uuid4(), # Allocate a new uuid
|
366 |
)
|
@@ -2,7 +2,7 @@ INTRODUCTION_MD = """
|
|
2 |
<h1 style="text-align: center;">
|
3 |
🐢Giskard Evaluator
|
4 |
</h1>
|
5 |
-
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model
|
6 |
"""
|
7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
8 |
<h1 style="text-align: center;">
|
@@ -18,13 +18,17 @@ CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
|
18 |
"""
|
19 |
|
20 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
21 |
-
Sorry, we cannot align the input/output of your dataset with the model.
|
22 |
"""
|
23 |
|
24 |
CHECK_CONFIG_OR_SPLIT_RAW = """
|
25 |
Please check your dataset config or split.
|
26 |
"""
|
27 |
|
|
|
|
|
|
|
|
|
28 |
PREDICTION_SAMPLE_MD = """
|
29 |
<h1 style="text-align: center;">
|
30 |
Model Prediction Sample
|
@@ -33,11 +37,17 @@ PREDICTION_SAMPLE_MD = """
|
|
33 |
"""
|
34 |
|
35 |
MAPPING_STYLED_ERROR_WARNING = """
|
36 |
-
<h3 style="text-align: center;color:
|
37 |
Sorry, we cannot auto-align the labels/features of your dataset and model. Please double check.
|
38 |
</h3>
|
39 |
"""
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
NOT_TEXT_CLASSIFICATION_MODEL_RAW = """
|
42 |
Your model does not fall under the category of text classification. This page is specifically designated for the evaluation of text classification models.
|
43 |
"""
|
@@ -61,7 +71,16 @@ USE_INFERENCE_API_TIP = """
|
|
61 |
</b>
|
62 |
"""
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def get_styled_input(input):
|
65 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
66 |
-
Sample input: {input}
|
67 |
</h3>"""
|
|
|
2 |
<h1 style="text-align: center;">
|
3 |
🐢Giskard Evaluator
|
4 |
</h1>
|
5 |
+
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model.
|
6 |
"""
|
7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
8 |
<h1 style="text-align: center;">
|
|
|
18 |
"""
|
19 |
|
20 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
21 |
+
Sorry, we cannot auto-align the input/output of your dataset with the model.
|
22 |
"""
|
23 |
|
24 |
CHECK_CONFIG_OR_SPLIT_RAW = """
|
25 |
Please check your dataset config or split.
|
26 |
"""
|
27 |
|
28 |
+
CHECK_LOG_SECTION_RAW = """
|
29 |
+
Your have successfully submitted a Giskard evaluation. Further details are available in the Logs tab. You can find your report will be posted to your model's community discussion.
|
30 |
+
"""
|
31 |
+
|
32 |
PREDICTION_SAMPLE_MD = """
|
33 |
<h1 style="text-align: center;">
|
34 |
Model Prediction Sample
|
|
|
37 |
"""
|
38 |
|
39 |
MAPPING_STYLED_ERROR_WARNING = """
|
40 |
+
<h3 style="text-align: center;color: orange; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
41 |
Sorry, we cannot auto-align the labels/features of your dataset and model. Please double check.
|
42 |
</h3>
|
43 |
"""
|
44 |
|
45 |
+
UNMATCHED_MODEL_DATASET_STYLED_ERROR = """
|
46 |
+
<h3 style="text-align: center;color: #fa5f5f; background-color: #fbe2e2; border-radius: 8px; padding: 10px; ">
|
47 |
+
Your model and dataset have different numbers of labels. Please double check your model and dataset.
|
48 |
+
</h3>
|
49 |
+
"""
|
50 |
+
|
51 |
NOT_TEXT_CLASSIFICATION_MODEL_RAW = """
|
52 |
Your model does not fall under the category of text classification. This page is specifically designated for the evaluation of text classification models.
|
53 |
"""
|
|
|
71 |
</b>
|
72 |
"""
|
73 |
|
74 |
+
HF_TOKEN_INVALID_STYLED= """
|
75 |
+
<p style="text-align: left;color: red; ">
|
76 |
+
Your Hugging Face token is invalid. Please double check your token.
|
77 |
+
</p>
|
78 |
+
"""
|
79 |
+
|
80 |
+
def get_dataset_fetch_error_raw(error):
|
81 |
+
return f"""Sorry you cannot use this dataset because {error} Contact HF team to support this dataset."""
|
82 |
+
|
83 |
def get_styled_input(input):
|
84 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
85 |
+
Your model and dataset have been validated! <br /> Sample input: {input}
|
86 |
</h3>"""
|