ZeroCommand commited on
Commit
52ba351
1 Parent(s): 1ead652

add trust remote code param for dataset with scripts

Browse files
app_leaderboard.py CHANGED
@@ -21,7 +21,7 @@ def get_records_from_dataset_repo(dataset_id):
21
  logger.info(f"Dataset {dataset_id} has splits {dataset_split}")
22
 
23
  try:
24
- ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]]
25
  df = ds.to_pandas()
26
  return df
27
  except Exception as e:
 
21
  logger.info(f"Dataset {dataset_id} has splits {dataset_split}")
22
 
23
  try:
24
+ ds = datasets.load_dataset(dataset_id, dataset_config[0], split=dataset_split[0])
25
  df = ds.to_pandas()
26
  return df
27
  except Exception as e:
fetch_utils.py CHANGED
@@ -14,7 +14,7 @@ def check_dataset_and_get_config(dataset_id):
14
 
15
  def check_dataset_and_get_split(dataset_id, dataset_config):
16
  try:
17
- ds = datasets.load_dataset(dataset_id, dataset_config)
18
  except Exception as e:
19
  # Dataset may not exist
20
  logging.warning(
 
14
 
15
  def check_dataset_and_get_split(dataset_id, dataset_config):
16
  try:
17
+ ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
18
  except Exception as e:
19
  # Dataset may not exist
20
  logging.warning(
text_classification.py CHANGED
@@ -254,7 +254,7 @@ def infer_output_label_column(
254
 
255
  def check_dataset_features_validity(d_id, config, split):
256
  # We assume dataset is ok here
257
- ds = datasets.load_dataset(d_id, config)[split]
258
  try:
259
  dataset_features = ds.features
260
  except AttributeError:
@@ -278,7 +278,7 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
278
  prediction_result = None
279
  try:
280
  # Use the first item to test prediction
281
- ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
282
  if "text" not in ds.features.keys():
283
  # Dataset does not have text column
284
  prediction_input = ds[0][select_the_first_string_column(ds)]
 
254
 
255
  def check_dataset_features_validity(d_id, config, split):
256
  # We assume dataset is ok here
257
+ ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
258
  try:
259
  dataset_features = ds.features
260
  except AttributeError:
 
278
  prediction_result = None
279
  try:
280
  # Use the first item to test prediction
281
+ ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
282
  if "text" not in ds.features.keys():
283
  # Dataset does not have text column
284
  prediction_input = ds[0][select_the_first_string_column(ds)]
text_classification_ui_helpers.py CHANGED
@@ -59,11 +59,9 @@ def check_dataset(dataset_id):
59
  gr.update(),
60
  ""
61
  )
62
- splits = list(
63
- datasets.load_dataset(
64
- dataset_id, configs[0]
65
- ).keys()
66
- )
67
  return (
68
  gr.update(choices=configs, value=configs[0], visible=True),
69
  gr.update(choices=splits, value=splits[0], visible=True),
@@ -176,7 +174,7 @@ def precheck_model_ds_enable_example_btn(
176
  return (gr.update(), gr.update(), "")
177
 
178
  try:
179
- ds = datasets.load_dataset(dataset_id, dataset_config)
180
  df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
181
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
182
 
@@ -243,7 +241,7 @@ def align_columns_and_show_prediction(
243
 
244
  model_labels = list(prediction_response.keys())
245
 
246
- ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
247
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
248
 
249
  # when dataset does not have labels or features
@@ -334,7 +332,7 @@ def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
334
  check_column_mapping_keys_validity(all_mappings)
335
 
336
  # get ds labels and features again for alignment
337
- ds = datasets.load_dataset(d_id, config)[split]
338
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
339
  label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
340
 
 
59
  gr.update(),
60
  ""
61
  )
62
+ splits = datasets.get_dataset_split_names(
63
+ dataset_id, configs[0], trust_remote_code=True
64
+ )
 
 
65
  return (
66
  gr.update(choices=configs, value=configs[0], visible=True),
67
  gr.update(choices=splits, value=splits[0], visible=True),
 
174
  return (gr.update(), gr.update(), "")
175
 
176
  try:
177
+ ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
178
  df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
179
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
180
 
 
241
 
242
  model_labels = list(prediction_response.keys())
243
 
244
+ ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
245
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
246
 
247
  # when dataset does not have labels or features
 
332
  check_column_mapping_keys_validity(all_mappings)
333
 
334
  # get ds labels and features again for alignment
335
+ ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
336
  ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
337
  label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
338