ZeroCommand commited on
Commit
346fe42
·
1 Parent(s): 8a71b00

add hf token validation

Browse files
app_text_classification.py CHANGED
@@ -11,7 +11,14 @@ from text_classification_ui_helpers import (
11
  try_submit,
12
  write_column_mapping_to_config,
13
  )
14
- from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD, USE_INFERENCE_API_TIP, CHECK_LOG_SECTION_RAW
 
 
 
 
 
 
 
15
 
16
  MAX_LABELS = 40
17
  MAX_FEATURES = 20
@@ -225,6 +232,11 @@ def get_demo():
225
  return gr.update(interactive=False)
226
  if not column_mapping_accordion.visible:
227
  return gr.update(interactive=False)
 
 
 
 
 
228
  return gr.update(interactive=True)
229
 
230
  gr.on(
 
11
  try_submit,
12
  write_column_mapping_to_config,
13
  )
14
+
15
+ from text_classification import get_example_prediction, HuggingFaceInferenceAPIResponse
16
+ from wordings import (
17
+ CONFIRM_MAPPING_DETAILS_MD,
18
+ INTRODUCTION_MD,
19
+ USE_INFERENCE_API_TIP,
20
+ CHECK_LOG_SECTION_RAW
21
+ )
22
 
23
  MAX_LABELS = 40
24
  MAX_FEATURES = 20
 
232
  return gr.update(interactive=False)
233
  if not column_mapping_accordion.visible:
234
  return gr.update(interactive=False)
235
+ _, prediction_response = get_example_prediction(
236
+ model_id, dataset_id, dataset_config, dataset_split, inference_token
237
+ )
238
+ if not isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
239
+ return gr.update(interactive=False)
240
  return gr.update(interactive=True)
241
 
242
  gr.on(
text_classification.py CHANGED
@@ -272,7 +272,7 @@ def select_the_first_string_column(ds):
272
  return None
273
 
274
 
275
- def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
276
  # get a sample prediction from the model on the dataset
277
  prediction_input = None
278
  prediction_result = None
@@ -284,8 +284,7 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
284
  prediction_input = ds[0][select_the_first_string_column(ds)]
285
  else:
286
  prediction_input = ds[0]["text"]
287
-
288
- hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
289
  payload = {"inputs": prediction_input, "options": {"use_cache": True}}
290
  results = hf_inference_api(model_id, hf_token, payload)
291
 
 
272
  return None
273
 
274
 
275
+ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split, hf_token):
276
  # get a sample prediction from the model on the dataset
277
  prediction_input = None
278
  prediction_result = None
 
284
  prediction_input = ds[0][select_the_first_string_column(ds)]
285
  else:
286
  prediction_input = ds[0]["text"]
287
+
 
288
  payload = {"inputs": prediction_input, "options": {"use_cache": True}}
289
  results = hf_inference_api(model_id, hf_token, payload)
290
 
text_classification_ui_helpers.py CHANGED
@@ -27,6 +27,7 @@ from wordings import (
27
  CHECK_LOG_SECTION_RAW,
28
  get_styled_input,
29
  )
 
30
 
31
  MAX_LABELS = 40
32
  MAX_FEATURES = 20
@@ -214,9 +215,11 @@ def align_columns_and_show_prediction(
214
  dropdown_placement = [
215
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
216
  ]
 
 
217
 
218
  prediction_input, prediction_response = get_example_prediction(
219
- model_id, dataset_id, dataset_config, dataset_split
220
  )
221
 
222
  if prediction_input is None or prediction_response is None:
@@ -325,7 +328,6 @@ def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
325
  feature_mapping = all_mappings["features"]
326
  return label_mapping, feature_mapping
327
 
328
-
329
  def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
330
  all_mappings = read_column_mapping(uid)
331
  check_column_mapping_keys_validity(all_mappings)
 
27
  CHECK_LOG_SECTION_RAW,
28
  get_styled_input,
29
  )
30
+ import os
31
 
32
  MAX_LABELS = 40
33
  MAX_FEATURES = 20
 
215
  dropdown_placement = [
216
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
217
  ]
218
+
219
+ hf_token = os.environ.get("HF_WRITE_TOKEN", default="")
220
 
221
  prediction_input, prediction_response = get_example_prediction(
222
+ model_id, dataset_id, dataset_config, dataset_split, hf_token
223
  )
224
 
225
  if prediction_input is None or prediction_response is None:
 
328
  feature_mapping = all_mappings["features"]
329
  return label_mapping, feature_mapping
330
 
 
331
  def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
332
  all_mappings = read_column_mapping(uid)
333
  check_column_mapping_keys_validity(all_mappings)