Spaces:
Running
Running
Commit
•
9e4233f
1
Parent(s):
e84a2e8
restructure and improve user interface with dropdown (#14)
Browse files- change structure and improve ui (1b0a56bc85f9a75dfb26b429a583738482a69162)
- clean up and change run btn| (4434857b3c7422d8e0b9532200df04e683af5fd5)
Co-authored-by: zcy <ZeroCommand@users.noreply.huggingface.co>
- app.py +8 -367
- app_leaderboard.py +0 -0
- app_legacy.py +373 -0
- app_text_classification.py +232 -0
- cicd +0 -1
- config.yaml +3 -6
- text_classification.py +133 -38
- utils.py +23 -3
- wordings.py +17 -0
app.py
CHANGED
@@ -1,374 +1,15 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import datasets
|
3 |
-
import huggingface_hub
|
4 |
-
import os
|
5 |
-
import time
|
6 |
-
import subprocess
|
7 |
-
import logging
|
8 |
-
|
9 |
-
import json
|
10 |
-
|
11 |
-
from transformers.pipelines import TextClassificationPipeline
|
12 |
-
|
13 |
-
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
-
from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json
|
15 |
-
|
16 |
-
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
-
HF_SPACE_ID = 'SPACE_ID'
|
18 |
-
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
-
|
20 |
-
theme = gr.themes.Soft(
|
21 |
-
primary_hue="green",
|
22 |
-
)
|
23 |
-
|
24 |
-
def check_model(model_id):
|
25 |
-
try:
|
26 |
-
task = huggingface_hub.model_info(model_id).pipeline_tag
|
27 |
-
except Exception:
|
28 |
-
return None, None
|
29 |
-
|
30 |
-
try:
|
31 |
-
from transformers import pipeline
|
32 |
-
ppl = pipeline(task=task, model=model_id)
|
33 |
-
|
34 |
-
return model_id, ppl
|
35 |
-
except Exception as e:
|
36 |
-
return model_id, e
|
37 |
-
|
38 |
-
|
39 |
-
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
40 |
-
try:
|
41 |
-
configs = datasets.get_dataset_config_names(dataset_id)
|
42 |
-
except Exception:
|
43 |
-
# Dataset may not exist
|
44 |
-
return None, dataset_config, dataset_split
|
45 |
-
|
46 |
-
if dataset_config not in configs:
|
47 |
-
# Need to choose dataset subset (config)
|
48 |
-
return dataset_id, configs, dataset_split
|
49 |
-
|
50 |
-
ds = datasets.load_dataset(dataset_id, dataset_config)
|
51 |
-
|
52 |
-
if isinstance(ds, datasets.DatasetDict):
|
53 |
-
# Need to choose dataset split
|
54 |
-
if dataset_split not in ds.keys():
|
55 |
-
return dataset_id, None, list(ds.keys())
|
56 |
-
elif not isinstance(ds, datasets.Dataset):
|
57 |
-
# Unknown type
|
58 |
-
return dataset_id, None, None
|
59 |
-
return dataset_id, dataset_config, dataset_split
|
60 |
-
|
61 |
-
def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'):
|
62 |
-
# Validate model
|
63 |
-
if m_id is None:
|
64 |
-
gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.')
|
65 |
-
return (
|
66 |
-
gr.update(interactive=False), # Submit button
|
67 |
-
gr.update(visible=True), # Loading row
|
68 |
-
gr.update(visible=False), # Preview row
|
69 |
-
gr.update(visible=False), # Model prediction input
|
70 |
-
gr.update(visible=False), # Model prediction preview
|
71 |
-
gr.update(visible=False), # Label mapping preview
|
72 |
-
gr.update(visible=False), # feature mapping preview
|
73 |
-
)
|
74 |
-
if isinstance(ppl, Exception):
|
75 |
-
gr.Warning(f'Failed to load model": {ppl}')
|
76 |
-
return (
|
77 |
-
gr.update(interactive=False), # Submit button
|
78 |
-
gr.update(visible=True), # Loading row
|
79 |
-
gr.update(visible=False), # Preview row
|
80 |
-
gr.update(visible=False), # Model prediction input
|
81 |
-
gr.update(visible=False), # Model prediction preview
|
82 |
-
gr.update(visible=False), # Label mapping preview
|
83 |
-
gr.update(visible=False), # feature mapping preview
|
84 |
-
)
|
85 |
-
|
86 |
-
# Validate dataset
|
87 |
-
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)
|
88 |
-
|
89 |
-
dataset_ok = False
|
90 |
-
if d_id is None:
|
91 |
-
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
|
92 |
-
elif isinstance(config, list):
|
93 |
-
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
|
94 |
-
config = gr.update(choices=config, value=config[0])
|
95 |
-
elif isinstance(split, list):
|
96 |
-
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
|
97 |
-
split = gr.update(choices=split, value=split[0])
|
98 |
-
else:
|
99 |
-
dataset_ok = True
|
100 |
-
|
101 |
-
if not dataset_ok:
|
102 |
-
return (
|
103 |
-
gr.update(interactive=False), # Submit button
|
104 |
-
gr.update(visible=True), # Loading row
|
105 |
-
gr.update(visible=False), # Preview row
|
106 |
-
gr.update(visible=False), # Model prediction input
|
107 |
-
gr.update(visible=False), # Model prediction preview
|
108 |
-
gr.update(visible=False), # Label mapping preview
|
109 |
-
gr.update(visible=False), # feature mapping preview
|
110 |
-
)
|
111 |
-
|
112 |
-
# TODO: Validate column mapping by running once
|
113 |
-
prediction_result = None
|
114 |
-
id2label_df = None
|
115 |
-
if isinstance(ppl, TextClassificationPipeline):
|
116 |
-
try:
|
117 |
-
print('validating phase, ', column_mapping)
|
118 |
-
column_mapping = json.loads(column_mapping)
|
119 |
-
except Exception:
|
120 |
-
column_mapping = {}
|
121 |
-
|
122 |
-
column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
|
123 |
-
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
124 |
-
|
125 |
-
column_mapping = json.dumps(column_mapping, indent=2)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
return (
|
130 |
-
gr.update(interactive=False), # Submit button
|
131 |
-
gr.update(visible=False), # Loading row
|
132 |
-
gr.update(visible=True), # Preview row
|
133 |
-
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
134 |
-
gr.update(visible=False), # Model prediction preview
|
135 |
-
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
136 |
-
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
137 |
-
)
|
138 |
-
elif id2label_df is None:
|
139 |
-
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
140 |
-
return (
|
141 |
-
gr.update(interactive=False), # Submit button
|
142 |
-
gr.update(visible=False), # Loading row
|
143 |
-
gr.update(visible=True), # Preview row
|
144 |
-
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
145 |
-
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
146 |
-
gr.update(visible=True, interactive=True), # Label mapping preview
|
147 |
-
gr.update(visible=True, interactive=True), # feature mapping preview
|
148 |
-
)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
return (
|
153 |
-
gr.update(interactive=True), # Submit button
|
154 |
-
gr.update(visible=False), # Loading row
|
155 |
-
gr.update(visible=True), # Preview row
|
156 |
-
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
157 |
-
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
158 |
-
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
159 |
-
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
160 |
-
)
|
161 |
-
|
162 |
-
|
163 |
-
def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
|
164 |
-
label_mapping = {}
|
165 |
-
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
166 |
-
label_mapping.update({str(i): label})
|
167 |
-
|
168 |
-
feature_mapping = {}
|
169 |
-
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
170 |
-
feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})
|
171 |
-
|
172 |
-
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
173 |
-
|
174 |
-
if local:
|
175 |
-
command = [
|
176 |
-
"python",
|
177 |
-
"cli.py",
|
178 |
-
"--loader", "huggingface",
|
179 |
-
"--model", m_id,
|
180 |
-
"--dataset", d_id,
|
181 |
-
"--dataset_config", config,
|
182 |
-
"--dataset_split", split,
|
183 |
-
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
|
184 |
-
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
185 |
-
"--output_format", "markdown",
|
186 |
-
"--output_portal", "huggingface",
|
187 |
-
"--feature_mapping", json.dumps(feature_mapping),
|
188 |
-
"--label_mapping", json.dumps(label_mapping),
|
189 |
-
"--scan_config", "../config.yaml",
|
190 |
-
]
|
191 |
-
|
192 |
-
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
193 |
-
start = time.time()
|
194 |
-
logging.info(f"Start local evaluation on {eval_str}")
|
195 |
-
|
196 |
-
evaluator = subprocess.Popen(
|
197 |
-
command,
|
198 |
-
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
|
199 |
-
stderr=subprocess.STDOUT,
|
200 |
-
)
|
201 |
-
result = evaluator.wait()
|
202 |
-
|
203 |
-
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
|
204 |
|
205 |
-
|
206 |
-
else:
|
207 |
-
gr.Info("TODO: Submit task to an endpoint")
|
208 |
-
|
209 |
-
return gr.update(interactive=True) # Submit button
|
210 |
|
211 |
|
212 |
-
with gr.Blocks(theme=
|
213 |
with gr.Tab("Text Classification"):
|
214 |
-
|
215 |
-
|
216 |
-
configs = datasets.get_dataset_config_names(dataset_id)
|
217 |
-
return gr.Dropdown(configs, value=configs[0], visible=True)
|
218 |
-
except Exception:
|
219 |
-
# Dataset may not exist
|
220 |
-
pass
|
221 |
-
|
222 |
-
def check_dataset_and_get_split(dataset_config, dataset_id):
|
223 |
-
try:
|
224 |
-
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
225 |
-
return gr.Dropdown(splits, value=splits[0], visible=True)
|
226 |
-
except Exception as e:
|
227 |
-
# Dataset may not exist
|
228 |
-
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
229 |
-
pass
|
230 |
-
|
231 |
-
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
232 |
-
column_mapping = '{}'
|
233 |
-
_, ppl = check_model(model_id=model_id)
|
234 |
-
|
235 |
-
if id2label_mapping_dataframe is not None:
|
236 |
-
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
237 |
-
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
238 |
-
column_mapping = json.dumps({**labels, **features}, indent=2)
|
239 |
-
|
240 |
-
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
241 |
-
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
242 |
-
return (gr.update(interactive=False),
|
243 |
-
gr.update(),
|
244 |
-
gr.update(),
|
245 |
-
gr.update(),
|
246 |
-
gr.update(),
|
247 |
-
gr.update(),
|
248 |
-
gr.update())
|
249 |
-
else:
|
250 |
-
if model_id and dataset_id and dataset_config and dataset_split:
|
251 |
-
return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
|
252 |
-
else:
|
253 |
-
return (gr.update(interactive=False),
|
254 |
-
gr.update(visible=True),
|
255 |
-
gr.update(visible=False),
|
256 |
-
gr.update(visible=False),
|
257 |
-
gr.update(visible=False),
|
258 |
-
gr.update(visible=False),
|
259 |
-
gr.update(visible=False))
|
260 |
-
with gr.Row():
|
261 |
-
gr.Markdown('''
|
262 |
-
<h1 style="text-align: center;">
|
263 |
-
Giskard Evaluator
|
264 |
-
</h1>
|
265 |
-
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
266 |
-
''')
|
267 |
-
with gr.Row():
|
268 |
-
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
269 |
-
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
|
270 |
-
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
271 |
-
|
272 |
-
with gr.Row() as advanced_row:
|
273 |
-
selected = read_scanners('./config.yaml')
|
274 |
-
scan_config = selected + ['data_leakage']
|
275 |
-
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
276 |
-
|
277 |
-
with gr.Row():
|
278 |
-
model_id_input = gr.Textbox(
|
279 |
-
label="Hugging Face model id",
|
280 |
-
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
281 |
-
)
|
282 |
-
|
283 |
-
dataset_id_input = gr.Textbox(
|
284 |
-
label="Hugging Face Dataset id",
|
285 |
-
placeholder="tweet_eval",
|
286 |
-
)
|
287 |
-
with gr.Row():
|
288 |
-
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
|
289 |
-
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
|
290 |
-
|
291 |
-
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
292 |
-
dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
293 |
-
|
294 |
-
dataset_config_input.change(
|
295 |
-
check_dataset_and_get_split,
|
296 |
-
inputs=[dataset_config_input, dataset_id_input],
|
297 |
-
outputs=[dataset_split_input])
|
298 |
-
|
299 |
-
with gr.Row(visible=True) as loading_row:
|
300 |
-
gr.Markdown('''
|
301 |
-
<p style="text-align: center;">
|
302 |
-
🚀🐢Please validate your model and dataset first...
|
303 |
-
</p>
|
304 |
-
''')
|
305 |
-
|
306 |
-
with gr.Row(visible=False) as preview_row:
|
307 |
-
gr.Markdown('''
|
308 |
-
<h1 style="text-align: center;">
|
309 |
-
Confirm Pre-processing Details
|
310 |
-
</h1>
|
311 |
-
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
312 |
-
''')
|
313 |
-
|
314 |
-
with gr.Row():
|
315 |
-
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
316 |
-
feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
|
317 |
-
with gr.Row():
|
318 |
-
example_input = gr.Markdown('Sample Input: ', visible=False)
|
319 |
-
|
320 |
-
with gr.Row():
|
321 |
-
example_labels = gr.Label(label='Model Prediction Sample', visible=False)
|
322 |
-
|
323 |
-
run_btn = gr.Button(
|
324 |
-
"Get Evaluation Result",
|
325 |
-
variant="primary",
|
326 |
-
interactive=False,
|
327 |
-
size="lg",
|
328 |
-
)
|
329 |
-
|
330 |
-
model_id_input.blur(gate_validate_btn,
|
331 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
332 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
333 |
-
dataset_id_input.blur(gate_validate_btn,
|
334 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
335 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
336 |
-
dataset_config_input.change(gate_validate_btn,
|
337 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
338 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
339 |
-
dataset_split_input.change(gate_validate_btn,
|
340 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
341 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
342 |
-
id2label_mapping_dataframe.input(gate_validate_btn,
|
343 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
344 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
345 |
-
feature_mapping_dataframe.input(gate_validate_btn,
|
346 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
347 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
348 |
-
scanners.change(write_scanners, inputs=scanners)
|
349 |
-
run_inference.change(
|
350 |
-
write_inference_type,
|
351 |
-
inputs=[run_inference]
|
352 |
-
)
|
353 |
-
|
354 |
-
run_btn.click(
|
355 |
-
try_submit,
|
356 |
-
inputs=[
|
357 |
-
model_id_input,
|
358 |
-
dataset_id_input,
|
359 |
-
dataset_config_input,
|
360 |
-
dataset_split_input,
|
361 |
-
id2label_mapping_dataframe,
|
362 |
-
feature_mapping_dataframe,
|
363 |
-
run_local,
|
364 |
-
],
|
365 |
-
outputs=[
|
366 |
-
run_btn,
|
367 |
-
],
|
368 |
-
)
|
369 |
-
|
370 |
-
with gr.Tab("More"):
|
371 |
pass
|
372 |
-
|
373 |
-
if __name__ == "__main__":
|
374 |
-
iface.queue(max_size=20).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# Start apps
|
3 |
+
# from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
from app_text_classification import get_demo as get_demo_text_classification
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
11 |
with gr.Tab("Text Classification"):
|
12 |
+
get_demo_text_classification()
|
13 |
+
with gr.Tab("Leaderboard - Text Classification"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pass
|
15 |
+
demo.launch()
|
|
|
|
app_leaderboard.py
ADDED
File without changes
|
app_legacy.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import datasets
|
3 |
+
import huggingface_hub
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import subprocess
|
7 |
+
import logging
|
8 |
+
|
9 |
+
import json
|
10 |
+
|
11 |
+
from transformers.pipelines import TextClassificationPipeline
|
12 |
+
|
13 |
+
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
+
from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json
|
15 |
+
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_MD
|
16 |
+
|
17 |
+
HF_REPO_ID = 'HF_REPO_ID'
|
18 |
+
HF_SPACE_ID = 'SPACE_ID'
|
19 |
+
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
20 |
+
|
21 |
+
def check_model(model_id):
|
22 |
+
try:
|
23 |
+
task = huggingface_hub.model_info(model_id).pipeline_tag
|
24 |
+
except Exception:
|
25 |
+
return None, None
|
26 |
+
|
27 |
+
try:
|
28 |
+
from transformers import pipeline
|
29 |
+
ppl = pipeline(task=task, model=model_id)
|
30 |
+
|
31 |
+
return model_id, ppl
|
32 |
+
except Exception as e:
|
33 |
+
return model_id, e
|
34 |
+
|
35 |
+
|
36 |
+
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
37 |
+
try:
|
38 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
39 |
+
except Exception:
|
40 |
+
# Dataset may not exist
|
41 |
+
return None, dataset_config, dataset_split
|
42 |
+
|
43 |
+
if dataset_config not in configs:
|
44 |
+
# Need to choose dataset subset (config)
|
45 |
+
return dataset_id, configs, dataset_split
|
46 |
+
|
47 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)
|
48 |
+
|
49 |
+
if isinstance(ds, datasets.DatasetDict):
|
50 |
+
# Need to choose dataset split
|
51 |
+
if dataset_split not in ds.keys():
|
52 |
+
return dataset_id, None, list(ds.keys())
|
53 |
+
elif not isinstance(ds, datasets.Dataset):
|
54 |
+
# Unknown type
|
55 |
+
return dataset_id, None, None
|
56 |
+
return dataset_id, dataset_config, dataset_split
|
57 |
+
|
58 |
+
def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'):
|
59 |
+
# Validate model
|
60 |
+
if m_id is None:
|
61 |
+
gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.')
|
62 |
+
return (
|
63 |
+
gr.update(interactive=False), # Submit button
|
64 |
+
gr.update(visible=True), # Loading row
|
65 |
+
gr.update(visible=False), # Preview row
|
66 |
+
gr.update(visible=False), # Model prediction input
|
67 |
+
gr.update(visible=False), # Model prediction preview
|
68 |
+
gr.update(visible=False), # Label mapping preview
|
69 |
+
gr.update(visible=False), # feature mapping preview
|
70 |
+
)
|
71 |
+
if isinstance(ppl, Exception):
|
72 |
+
gr.Warning(f'Failed to load model": {ppl}')
|
73 |
+
return (
|
74 |
+
gr.update(interactive=False), # Submit button
|
75 |
+
gr.update(visible=True), # Loading row
|
76 |
+
gr.update(visible=False), # Preview row
|
77 |
+
gr.update(visible=False), # Model prediction input
|
78 |
+
gr.update(visible=False), # Model prediction preview
|
79 |
+
gr.update(visible=False), # Label mapping preview
|
80 |
+
gr.update(visible=False), # feature mapping preview
|
81 |
+
)
|
82 |
+
|
83 |
+
# Validate dataset
|
84 |
+
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)
|
85 |
+
|
86 |
+
dataset_ok = False
|
87 |
+
if d_id is None:
|
88 |
+
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
|
89 |
+
elif isinstance(config, list):
|
90 |
+
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
|
91 |
+
config = gr.update(choices=config, value=config[0])
|
92 |
+
elif isinstance(split, list):
|
93 |
+
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
|
94 |
+
split = gr.update(choices=split, value=split[0])
|
95 |
+
else:
|
96 |
+
dataset_ok = True
|
97 |
+
|
98 |
+
if not dataset_ok:
|
99 |
+
return (
|
100 |
+
gr.update(interactive=False), # Submit button
|
101 |
+
gr.update(visible=True), # Loading row
|
102 |
+
gr.update(visible=False), # Preview row
|
103 |
+
gr.update(visible=False), # Model prediction input
|
104 |
+
gr.update(visible=False), # Model prediction preview
|
105 |
+
gr.update(visible=False), # Label mapping preview
|
106 |
+
gr.update(visible=False), # feature mapping preview
|
107 |
+
)
|
108 |
+
|
109 |
+
# TODO: Validate column mapping by running once
|
110 |
+
prediction_result = None
|
111 |
+
id2label_df = None
|
112 |
+
if isinstance(ppl, TextClassificationPipeline):
|
113 |
+
try:
|
114 |
+
column_mapping = json.loads(column_mapping)
|
115 |
+
except Exception:
|
116 |
+
column_mapping = {}
|
117 |
+
|
118 |
+
column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
|
119 |
+
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
120 |
+
|
121 |
+
column_mapping = json.dumps(column_mapping, indent=2)
|
122 |
+
|
123 |
+
if prediction_result is None and id2label_df is not None:
|
124 |
+
gr.Warning('The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.')
|
125 |
+
return (
|
126 |
+
gr.update(interactive=False), # Submit button
|
127 |
+
gr.update(visible=False), # Loading row
|
128 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
129 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
130 |
+
gr.update(visible=False), # Model prediction preview
|
131 |
+
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
132 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
133 |
+
)
|
134 |
+
elif id2label_df is None:
|
135 |
+
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
136 |
+
return (
|
137 |
+
gr.update(interactive=False), # Submit button
|
138 |
+
gr.update(visible=False), # Loading row
|
139 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
140 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
141 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
142 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
143 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
144 |
+
)
|
145 |
+
|
146 |
+
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
147 |
+
|
148 |
+
return (
|
149 |
+
gr.update(interactive=True), # Submit button
|
150 |
+
gr.update(visible=False), # Loading row
|
151 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
152 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
153 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
154 |
+
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
155 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
|
160 |
+
label_mapping = {}
|
161 |
+
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
162 |
+
label_mapping.update({str(i): label})
|
163 |
+
|
164 |
+
feature_mapping = {}
|
165 |
+
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
166 |
+
feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})
|
167 |
+
|
168 |
+
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
169 |
+
|
170 |
+
if local:
|
171 |
+
command = [
|
172 |
+
"python",
|
173 |
+
"cli.py",
|
174 |
+
"--loader", "huggingface",
|
175 |
+
"--model", m_id,
|
176 |
+
"--dataset", d_id,
|
177 |
+
"--dataset_config", config,
|
178 |
+
"--dataset_split", split,
|
179 |
+
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
|
180 |
+
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
181 |
+
"--output_format", "markdown",
|
182 |
+
"--output_portal", "huggingface",
|
183 |
+
"--feature_mapping", json.dumps(feature_mapping),
|
184 |
+
"--label_mapping", json.dumps(label_mapping),
|
185 |
+
"--scan_config", "../config.yaml",
|
186 |
+
]
|
187 |
+
|
188 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
189 |
+
start = time.time()
|
190 |
+
logging.info(f"Start local evaluation on {eval_str}")
|
191 |
+
|
192 |
+
evaluator = subprocess.Popen(
|
193 |
+
command,
|
194 |
+
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
|
195 |
+
stderr=subprocess.STDOUT,
|
196 |
+
)
|
197 |
+
result = evaluator.wait()
|
198 |
+
|
199 |
+
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
|
200 |
+
|
201 |
+
gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
|
202 |
+
else:
|
203 |
+
gr.Info("TODO: Submit task to an endpoint")
|
204 |
+
|
205 |
+
return gr.update(interactive=True) # Submit button
|
206 |
+
|
207 |
+
|
208 |
+
def get_demo():
|
209 |
+
# gr.themes.Soft(
|
210 |
+
# primary_hue="green",
|
211 |
+
# )
|
212 |
+
|
213 |
+
def check_dataset_and_get_config(dataset_id):
|
214 |
+
try:
|
215 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
216 |
+
return gr.Dropdown(configs, value=configs[0], visible=True)
|
217 |
+
except Exception:
|
218 |
+
# Dataset may not exist
|
219 |
+
pass
|
220 |
+
|
221 |
+
def check_dataset_and_get_split(dataset_config, dataset_id):
|
222 |
+
try:
|
223 |
+
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
224 |
+
return gr.Dropdown(splits, value=splits[0], visible=True)
|
225 |
+
except Exception as e:
|
226 |
+
# Dataset may not exist
|
227 |
+
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
228 |
+
pass
|
229 |
+
|
230 |
+
def clear_column_mapping_tables():
|
231 |
+
return [
|
232 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
233 |
+
gr.update(value=[], visible=False, interactive=True),
|
234 |
+
gr.update(value=[], visible=False, interactive=True),
|
235 |
+
]
|
236 |
+
|
237 |
+
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
238 |
+
column_mapping = '{}'
|
239 |
+
_, ppl = check_model(model_id=model_id)
|
240 |
+
|
241 |
+
if id2label_mapping_dataframe is not None:
|
242 |
+
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
243 |
+
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
244 |
+
column_mapping = json.dumps({**labels, **features}, indent=2)
|
245 |
+
|
246 |
+
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
247 |
+
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
248 |
+
return (gr.update(interactive=False),
|
249 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
250 |
+
gr.update(),
|
251 |
+
gr.update(),
|
252 |
+
gr.update(),
|
253 |
+
gr.update(),
|
254 |
+
gr.update())
|
255 |
+
else:
|
256 |
+
if model_id and dataset_id and dataset_config and dataset_split:
|
257 |
+
return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
|
258 |
+
else:
|
259 |
+
return (gr.update(interactive=False),
|
260 |
+
gr.update(visible=True),
|
261 |
+
gr.update(visible=False),
|
262 |
+
gr.update(visible=False),
|
263 |
+
gr.update(visible=False),
|
264 |
+
gr.update(visible=False),
|
265 |
+
gr.update(visible=False))
|
266 |
+
with gr.Row():
|
267 |
+
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
268 |
+
with gr.Row():
|
269 |
+
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
270 |
+
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
|
271 |
+
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
272 |
+
|
273 |
+
with gr.Row():
|
274 |
+
selected = read_scanners('./config.yaml')
|
275 |
+
scan_config = selected + ['data_leakage']
|
276 |
+
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
277 |
+
|
278 |
+
with gr.Row():
|
279 |
+
model_id_input = gr.Textbox(
|
280 |
+
label="Hugging Face model id",
|
281 |
+
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
282 |
+
)
|
283 |
+
|
284 |
+
dataset_id_input = gr.Textbox(
|
285 |
+
label="Hugging Face Dataset id",
|
286 |
+
placeholder="tweet_eval",
|
287 |
+
)
|
288 |
+
with gr.Row():
|
289 |
+
dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
|
290 |
+
dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
|
291 |
+
|
292 |
+
with gr.Row(visible=True) as loading_row:
|
293 |
+
gr.Markdown('''
|
294 |
+
<p style="text-align: center;">
|
295 |
+
🚀🐢Please validate your model and dataset first...
|
296 |
+
</p>
|
297 |
+
''')
|
298 |
+
|
299 |
+
with gr.Row(visible=False) as preview_row:
|
300 |
+
gr.Markdown('''
|
301 |
+
<h1 style="text-align: center;">
|
302 |
+
Confirm Pre-processing Details
|
303 |
+
</h1>
|
304 |
+
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
305 |
+
''')
|
306 |
+
|
307 |
+
with gr.Row():
|
308 |
+
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
309 |
+
feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
|
310 |
+
with gr.Row():
|
311 |
+
example_input = gr.Markdown('Sample Input: ', visible=False)
|
312 |
+
|
313 |
+
with gr.Row():
|
314 |
+
example_labels = gr.Label(label='Model Prediction Sample', visible=False)
|
315 |
+
|
316 |
+
run_btn = gr.Button(
|
317 |
+
"Get Evaluation Result",
|
318 |
+
variant="primary",
|
319 |
+
interactive=False,
|
320 |
+
size="lg",
|
321 |
+
)
|
322 |
+
|
323 |
+
model_id_input.blur(clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe])
|
324 |
+
|
325 |
+
|
326 |
+
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
327 |
+
dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
328 |
+
|
329 |
+
dataset_config_input.change(
|
330 |
+
check_dataset_and_get_split,
|
331 |
+
inputs=[dataset_config_input, dataset_id_input],
|
332 |
+
outputs=[dataset_split_input])
|
333 |
+
|
334 |
+
dataset_id_input.blur(clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe])
|
335 |
+
# model_id_input.blur(gate_validate_btn,
|
336 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
337 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
338 |
+
# dataset_id_input.blur(gate_validate_btn,
|
339 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
340 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
341 |
+
dataset_config_input.change(gate_validate_btn,
|
342 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
343 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
344 |
+
dataset_split_input.change(gate_validate_btn,
|
345 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
346 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
347 |
+
id2label_mapping_dataframe.input(gate_validate_btn,
|
348 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
349 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
350 |
+
feature_mapping_dataframe.input(gate_validate_btn,
|
351 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
352 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
353 |
+
scanners.change(write_scanners, inputs=scanners)
|
354 |
+
run_inference.change(
|
355 |
+
write_inference_type,
|
356 |
+
inputs=[run_inference]
|
357 |
+
)
|
358 |
+
|
359 |
+
run_btn.click(
|
360 |
+
try_submit,
|
361 |
+
inputs=[
|
362 |
+
model_id_input,
|
363 |
+
dataset_id_input,
|
364 |
+
dataset_config_input,
|
365 |
+
dataset_split_input,
|
366 |
+
id2label_mapping_dataframe,
|
367 |
+
feature_mapping_dataframe,
|
368 |
+
run_local,
|
369 |
+
],
|
370 |
+
outputs=[
|
371 |
+
run_btn,
|
372 |
+
],
|
373 |
+
)
|
app_text_classification.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import datasets
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
import subprocess
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import json
|
9 |
+
|
10 |
+
from transformers.pipelines import TextClassificationPipeline
|
11 |
+
|
12 |
+
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction, check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
13 |
+
from utils import read_scanners, write_scanners, read_inference_type, read_column_mapping, write_column_mapping, write_inference_type, convert_column_mapping_to_json
|
14 |
+
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
15 |
+
|
16 |
+
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
+
HF_SPACE_ID = 'SPACE_ID'
|
18 |
+
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
+
|
20 |
+
MAX_LABELS = 20
|
21 |
+
MAX_FEATURES = 20
|
22 |
+
|
23 |
+
EXAMPLE_MODEL_ID = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
|
24 |
+
EXAMPLE_DATA_ID = 'tweet_eval'
|
25 |
+
CONFIG_PATH='./config.yaml'
|
26 |
+
|
27 |
+
def try_submit(m_id, d_id, config, split, local):
|
28 |
+
all_mappings = read_column_mapping(CONFIG_PATH)
|
29 |
+
|
30 |
+
if "labels" not in all_mappings.keys():
|
31 |
+
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
32 |
+
return gr.update(interactive=True)
|
33 |
+
label_mapping = all_mappings["labels"]
|
34 |
+
|
35 |
+
if "features" not in all_mappings.keys():
|
36 |
+
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
37 |
+
return gr.update(interactive=True)
|
38 |
+
feature_mapping = all_mappings["features"]
|
39 |
+
|
40 |
+
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
41 |
+
if local:
|
42 |
+
command = [
|
43 |
+
"python",
|
44 |
+
"cli.py",
|
45 |
+
"--loader", "huggingface",
|
46 |
+
"--model", m_id,
|
47 |
+
"--dataset", d_id,
|
48 |
+
"--dataset_config", config,
|
49 |
+
"--dataset_split", split,
|
50 |
+
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
|
51 |
+
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
52 |
+
"--output_format", "markdown",
|
53 |
+
"--output_portal", "huggingface",
|
54 |
+
"--feature_mapping", json.dumps(feature_mapping),
|
55 |
+
"--label_mapping", json.dumps(label_mapping),
|
56 |
+
"--scan_config", "../config.yaml",
|
57 |
+
]
|
58 |
+
|
59 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
60 |
+
start = time.time()
|
61 |
+
logging.info(f"Start local evaluation on {eval_str}")
|
62 |
+
|
63 |
+
evaluator = subprocess.Popen(
|
64 |
+
command,
|
65 |
+
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
|
66 |
+
stderr=subprocess.STDOUT,
|
67 |
+
)
|
68 |
+
result = evaluator.wait()
|
69 |
+
|
70 |
+
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
|
71 |
+
|
72 |
+
gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
|
73 |
+
else:
|
74 |
+
gr.Info("TODO: Submit task to an endpoint")
|
75 |
+
|
76 |
+
return gr.update(interactive=True) # Submit button
|
77 |
+
|
78 |
+
|
79 |
+
def check_dataset_and_get_config(dataset_id):
|
80 |
+
try:
|
81 |
+
configs = datasets.get_dataset_config_names(dataset_id)
|
82 |
+
return gr.Dropdown(configs, value=configs[0], visible=True)
|
83 |
+
except Exception:
|
84 |
+
# Dataset may not exist
|
85 |
+
pass
|
86 |
+
|
87 |
+
def check_dataset_and_get_split(dataset_id, dataset_config):
|
88 |
+
try:
|
89 |
+
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
90 |
+
return gr.Dropdown(splits, value=splits[0], visible=True)
|
91 |
+
except Exception:
|
92 |
+
# Dataset may not exist
|
93 |
+
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
94 |
+
pass
|
95 |
+
|
96 |
+
def get_demo():
|
97 |
+
with gr.Row():
|
98 |
+
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
99 |
+
with gr.Row():
|
100 |
+
model_id_input = gr.Textbox(
|
101 |
+
label="Hugging Face model id",
|
102 |
+
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
103 |
+
)
|
104 |
+
|
105 |
+
dataset_id_input = gr.Textbox(
|
106 |
+
label="Hugging Face Dataset id",
|
107 |
+
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
|
112 |
+
dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
example_input = gr.Markdown('Example Input', visible=False)
|
116 |
+
with gr.Row():
|
117 |
+
example_prediction = gr.Label(label='Model Prediction Sample', visible=False)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
column_mappings = []
|
121 |
+
with gr.Column():
|
122 |
+
for _ in range(MAX_LABELS):
|
123 |
+
column_mappings.append(gr.Dropdown(visible=False))
|
124 |
+
with gr.Column():
|
125 |
+
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
126 |
+
column_mappings.append(gr.Dropdown(visible=False))
|
127 |
+
|
128 |
+
with gr.Accordion(label='Model Wrap Advance Config (optional)', open=False):
|
129 |
+
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
130 |
+
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
|
131 |
+
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
132 |
+
|
133 |
+
with gr.Accordion(label='Scanner Advance Config (optional)', open=False):
|
134 |
+
selected = read_scanners('./config.yaml')
|
135 |
+
scan_config = selected + ['data_leakage']
|
136 |
+
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
run_btn = gr.Button(
|
140 |
+
"Get Evaluation Result",
|
141 |
+
variant="primary",
|
142 |
+
interactive=True,
|
143 |
+
size="lg",
|
144 |
+
)
|
145 |
+
|
146 |
+
@gr.on(triggers=[label.change for label in column_mappings],
|
147 |
+
inputs=[dataset_id_input, dataset_config_input, dataset_split_input, *column_mappings])
|
148 |
+
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
|
149 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
|
150 |
+
if labels is None:
|
151 |
+
return
|
152 |
+
labels = [*labels]
|
153 |
+
all_mappings = read_column_mapping(CONFIG_PATH)
|
154 |
+
|
155 |
+
if "labels" not in all_mappings.keys():
|
156 |
+
all_mappings["labels"] = dict()
|
157 |
+
for i, label in enumerate(labels[:MAX_LABELS]):
|
158 |
+
if label:
|
159 |
+
all_mappings["labels"][label] = ds_labels[i]
|
160 |
+
|
161 |
+
if "features" not in all_mappings.keys():
|
162 |
+
all_mappings["features"] = dict()
|
163 |
+
for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
|
164 |
+
if feat:
|
165 |
+
all_mappings["features"][feat] = ds_features[i]
|
166 |
+
write_column_mapping(all_mappings)
|
167 |
+
|
168 |
+
def list_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split, model_id2label, model_features):
|
169 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
|
170 |
+
if ds_labels is None or ds_features is None:
|
171 |
+
return [gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
|
172 |
+
model_labels = list(model_id2label.values())
|
173 |
+
lables = [gr.Dropdown(label=f"{label}", choices=model_labels, value=model_id2label[i], interactive=True, visible=True) for i, label in enumerate(ds_labels[:MAX_LABELS])]
|
174 |
+
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
175 |
+
features = [gr.Dropdown(label=f"{feature}", choices=ds_features, value=ds_features[0], interactive=True, visible=True) for feature in model_features]
|
176 |
+
features += [gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))]
|
177 |
+
return lables + features
|
178 |
+
|
179 |
+
@gr.on(triggers=[model_id_input.change, dataset_config_input.change])
|
180 |
+
def clear_column_mapping_config():
|
181 |
+
write_column_mapping(None)
|
182 |
+
|
183 |
+
@gr.on(triggers=[model_id_input.change, dataset_config_input.change, dataset_split_input.change],
|
184 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
185 |
+
outputs=[example_input, example_prediction, *column_mappings])
|
186 |
+
def check_model_and_show_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
187 |
+
ppl = check_model(model_id)
|
188 |
+
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
189 |
+
gr.Warning("Please check your model.")
|
190 |
+
return (
|
191 |
+
gr.update(visible=False),
|
192 |
+
gr.update(visible=False),
|
193 |
+
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
|
194 |
+
)
|
195 |
+
model_id2label = ppl.model.config.id2label
|
196 |
+
model_features = ['text']
|
197 |
+
column_mappings = list_labels_and_features_from_dataset(
|
198 |
+
dataset_id,
|
199 |
+
dataset_config,
|
200 |
+
dataset_split,
|
201 |
+
model_id2label,
|
202 |
+
model_features
|
203 |
+
)
|
204 |
+
|
205 |
+
if ppl is None:
|
206 |
+
gr.Warning("Model not found")
|
207 |
+
return (
|
208 |
+
gr.update(visible=False),
|
209 |
+
gr.update(visible=False),
|
210 |
+
*column_mappings
|
211 |
+
)
|
212 |
+
prediction_input, prediction_output = get_example_prediction(ppl, dataset_id, dataset_config, dataset_split)
|
213 |
+
return (
|
214 |
+
gr.update(value=prediction_input, visible=True),
|
215 |
+
gr.update(value=prediction_output, visible=True),
|
216 |
+
*column_mappings
|
217 |
+
)
|
218 |
+
|
219 |
+
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
220 |
+
|
221 |
+
dataset_config_input.change(
|
222 |
+
check_dataset_and_get_split,
|
223 |
+
inputs=[dataset_id_input, dataset_config_input],
|
224 |
+
outputs=[dataset_split_input])
|
225 |
+
|
226 |
+
gr.on(
|
227 |
+
triggers=[
|
228 |
+
run_btn.click,
|
229 |
+
],
|
230 |
+
fn=try_submit,
|
231 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local],
|
232 |
+
outputs=[run_btn])
|
cicd
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit 96913a4f713372d3325002e0ec97320bae55d323
|
|
|
|
config.yaml
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
detectors:
|
2 |
- ethical_bias
|
3 |
- text_perturbation
|
@@ -6,10 +9,4 @@ detectors:
|
|
6 |
- underconfidence
|
7 |
- overconfidence
|
8 |
- spurious_correlation
|
9 |
-
|
10 |
-
configuration:
|
11 |
-
ethical_bias:
|
12 |
-
threshold:
|
13 |
-
0.01
|
14 |
-
|
15 |
inference_type: hf_pipeline
|
|
|
1 |
+
configuration:
|
2 |
+
ethical_bias:
|
3 |
+
threshold: 0.01
|
4 |
detectors:
|
5 |
- ethical_bias
|
6 |
- text_perturbation
|
|
|
9 |
- underconfidence
|
10 |
- overconfidence
|
11 |
- spurious_correlation
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
inference_type: hf_pipeline
|
text_classification.py
CHANGED
@@ -2,7 +2,33 @@ import datasets
|
|
2 |
import logging
|
3 |
import json
|
4 |
import pandas as pd
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
8 |
for model_label in id2label_mapping.keys():
|
@@ -60,10 +86,20 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
60 |
|
61 |
return user_labels == model_labels == original_labels
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def infer_text_input_column(column_mapping, dataset_features):
|
64 |
# Check whether we need to infer the text input column
|
65 |
infer_text_input_column = True
|
66 |
feature_map_df = None
|
|
|
67 |
if "text" in column_mapping.keys():
|
68 |
dataset_text_column = column_mapping["text"]
|
69 |
if dataset_text_column in dataset_features.keys():
|
@@ -82,33 +118,21 @@ def infer_text_input_column(column_mapping, dataset_features):
|
|
82 |
logging.debug(f"Candidates are {candidates}")
|
83 |
column_mapping["text"] = candidates[0]
|
84 |
|
85 |
-
return column_mapping, feature_map_df
|
86 |
-
|
87 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
88 |
-
# We assume dataset is ok here
|
89 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
90 |
-
try:
|
91 |
-
dataset_features = ds.features
|
92 |
-
except AttributeError:
|
93 |
-
# Dataset does not have features, need to provide everything
|
94 |
-
return None, None, None, None, None
|
95 |
-
|
96 |
-
column_mapping, feature_map_df = infer_text_input_column(column_mapping, dataset_features)
|
97 |
-
|
98 |
-
# Load dataset as DataFrame
|
99 |
-
df = ds.to_pandas()
|
100 |
-
|
101 |
-
# Retrieve all labels
|
102 |
-
id2label_mapping = {}
|
103 |
-
id2label = ppl.model.config.id2label
|
104 |
-
label2id = {v: k for k, v in id2label.items()}
|
105 |
-
|
106 |
-
# Infer labels
|
107 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
108 |
-
id2label_mapping_dataset_model = {
|
109 |
-
v: k for k, v in id2label_mapping.items()
|
110 |
-
}
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
if "data" in column_mapping.keys():
|
113 |
if isinstance(column_mapping["data"], list):
|
114 |
# Use the column mapping passed by user
|
@@ -118,13 +142,63 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
118 |
column_mapping["label"] = {
|
119 |
i: None for i in id2label.keys()
|
120 |
}
|
121 |
-
return column_mapping, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
id2label_df = pd.DataFrame({
|
124 |
"Dataset Labels": dataset_labels,
|
125 |
-
"Model Prediction Labels": [
|
126 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
|
|
|
|
|
|
|
|
|
|
128 |
# get a sample prediction from the model on the dataset
|
129 |
prediction_input = None
|
130 |
prediction_result = None
|
@@ -133,21 +207,42 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
133 |
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
134 |
results = ppl({"text": prediction_input}, top_k=None)
|
135 |
prediction_result = {
|
136 |
-
f'{result["label"]}
|
137 |
}
|
138 |
-
except Exception
|
139 |
# Pipeline prediction failed, need to provide labels
|
140 |
-
|
141 |
-
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
142 |
|
|
|
143 |
prediction_result = {
|
144 |
-
f'
|
145 |
}
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
}
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return column_mapping, prediction_input, prediction_result, id2label_df, feature_map_df
|
|
|
2 |
import logging
|
3 |
import json
|
4 |
import pandas as pd
|
5 |
+
import huggingface_hub
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
9 |
+
try:
|
10 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
11 |
+
dataset_features = ds.features
|
12 |
+
labels = dataset_features["label"].names
|
13 |
+
features = [f for f in dataset_features.keys() if f != "label"]
|
14 |
+
return labels, features
|
15 |
+
except Exception as e:
|
16 |
+
logging.warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
17 |
+
return None, None
|
18 |
+
|
19 |
+
def check_model(model_id):
|
20 |
+
try:
|
21 |
+
task = huggingface_hub.model_info(model_id).pipeline_tag
|
22 |
+
except Exception:
|
23 |
+
return None
|
24 |
+
|
25 |
+
try:
|
26 |
+
ppl = pipeline(task=task, model=model_id)
|
27 |
+
|
28 |
+
return ppl
|
29 |
+
except Exception:
|
30 |
+
return None
|
31 |
+
|
32 |
|
33 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
34 |
for model_label in id2label_mapping.keys():
|
|
|
86 |
|
87 |
return user_labels == model_labels == original_labels
|
88 |
|
89 |
+
'''
|
90 |
+
params:
|
91 |
+
column_mapping: dict
|
92 |
+
dataset_features: dict
|
93 |
+
example: {
|
94 |
+
'text': Value(dtype='string', id=None),
|
95 |
+
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
96 |
+
}
|
97 |
+
'''
|
98 |
def infer_text_input_column(column_mapping, dataset_features):
|
99 |
# Check whether we need to infer the text input column
|
100 |
infer_text_input_column = True
|
101 |
feature_map_df = None
|
102 |
+
|
103 |
if "text" in column_mapping.keys():
|
104 |
dataset_text_column = column_mapping["text"]
|
105 |
if dataset_text_column in dataset_features.keys():
|
|
|
118 |
logging.debug(f"Candidates are {candidates}")
|
119 |
column_mapping["text"] = candidates[0]
|
120 |
|
121 |
+
return column_mapping, feature_map_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
'''
|
124 |
+
params:
|
125 |
+
column_mapping: dict
|
126 |
+
id2label_mapping: dict
|
127 |
+
example:
|
128 |
+
id2label_mapping: {
|
129 |
+
'negative': 'negative',
|
130 |
+
'neutral': 'neutral',
|
131 |
+
'positive': 'positive'
|
132 |
+
}
|
133 |
+
'''
|
134 |
+
def infer_output_label_column(column_mapping, id2label_mapping, id2label, dataset_labels):
|
135 |
+
# Check whether we need to infer the output label column
|
136 |
if "data" in column_mapping.keys():
|
137 |
if isinstance(column_mapping["data"], list):
|
138 |
# Use the column mapping passed by user
|
|
|
142 |
column_mapping["label"] = {
|
143 |
i: None for i in id2label.keys()
|
144 |
}
|
145 |
+
return column_mapping, None
|
146 |
+
|
147 |
+
if "data" not in column_mapping.keys():
|
148 |
+
# Column mapping should contain original model labels
|
149 |
+
column_mapping["label"] = {
|
150 |
+
str(i): id2label_mapping[label] for i, label in zip(id2label.keys(), dataset_labels)
|
151 |
+
}
|
152 |
+
# print('>>>>> column_mapping >>>>>', column_mapping)
|
153 |
|
154 |
id2label_df = pd.DataFrame({
|
155 |
"Dataset Labels": dataset_labels,
|
156 |
+
"Model Prediction Labels": [id2label_mapping[label] for label in dataset_labels],
|
157 |
})
|
158 |
+
|
159 |
+
return column_mapping, id2label_df
|
160 |
+
|
161 |
+
def check_dataset_features_validity(d_id, config, split):
|
162 |
+
# We assume dataset is ok here
|
163 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
164 |
+
try:
|
165 |
+
dataset_features = ds.features
|
166 |
+
except AttributeError:
|
167 |
+
# Dataset does not have features, need to provide everything
|
168 |
+
return None, None
|
169 |
+
# Load dataset as DataFrame
|
170 |
+
df = ds.to_pandas()
|
171 |
+
|
172 |
+
return df, dataset_features
|
173 |
+
|
174 |
+
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
175 |
+
# get a sample prediction from the model on the dataset
|
176 |
+
prediction_input = None
|
177 |
+
prediction_result = None
|
178 |
+
try:
|
179 |
+
# Use the first item to test prediction
|
180 |
+
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
181 |
+
if "text" not in ds.features.keys():
|
182 |
+
# Dataset does not have text column
|
183 |
+
prediction_input = ds[0][ds.features.keys()[0]]
|
184 |
+
else:
|
185 |
+
prediction_input = ds[0]["text"]
|
186 |
+
|
187 |
+
print('prediction_input', prediction_input)
|
188 |
+
results = ppl(prediction_input, top_k=None)
|
189 |
+
# Display results in original label and mapped label
|
190 |
+
prediction_result = {
|
191 |
+
f'{result["label"]}': result["score"] for result in results
|
192 |
+
}
|
193 |
+
except Exception:
|
194 |
+
# Pipeline prediction failed, need to provide labels
|
195 |
+
return prediction_input, None
|
196 |
|
197 |
+
|
198 |
+
return prediction_input, prediction_result
|
199 |
+
|
200 |
+
|
201 |
+
def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
|
202 |
# get a sample prediction from the model on the dataset
|
203 |
prediction_input = None
|
204 |
prediction_result = None
|
|
|
207 |
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
208 |
results = ppl({"text": prediction_input}, top_k=None)
|
209 |
prediction_result = {
|
210 |
+
f'{result["label"]}': result["score"] for result in results
|
211 |
}
|
212 |
+
except Exception:
|
213 |
# Pipeline prediction failed, need to provide labels
|
214 |
+
return prediction_input, None
|
|
|
215 |
|
216 |
+
# Display results in original label and mapped label
|
217 |
prediction_result = {
|
218 |
+
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
219 |
}
|
220 |
+
return prediction_input, prediction_result
|
221 |
|
222 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
223 |
+
# load dataset as pd DataFrame
|
224 |
+
# get features column from dataset
|
225 |
+
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
|
|
226 |
|
227 |
+
column_mapping, feature_map_df = infer_text_input_column(column_mapping, dataset_features)
|
228 |
+
if feature_map_df is None:
|
229 |
+
# dataset does not have any features
|
230 |
+
return None, None, None, None, None
|
231 |
+
|
232 |
+
# Retrieve all labels
|
233 |
+
id2label = ppl.model.config.id2label
|
234 |
+
|
235 |
+
# Infer labels
|
236 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
237 |
+
column_mapping, id2label_df = infer_output_label_column(column_mapping, id2label_mapping, id2label, dataset_labels)
|
238 |
+
if id2label_df is None:
|
239 |
+
# does not able to infer output label column
|
240 |
+
return column_mapping, None, None, None, feature_map_df
|
241 |
+
|
242 |
+
# Get a sample prediction
|
243 |
+
prediction_input, prediction_result = get_sample_prediction(ppl, df, column_mapping, id2label_mapping)
|
244 |
+
if prediction_result is None:
|
245 |
+
# does not able to get a sample prediction
|
246 |
+
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
247 |
+
|
248 |
return column_mapping, prediction_input, prediction_result, id2label_df, feature_map_df
|
utils.py
CHANGED
@@ -12,7 +12,7 @@ def read_scanners(path):
|
|
12 |
scanners = []
|
13 |
with open(path, "r") as f:
|
14 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
15 |
-
scanners = config.get("detectors",
|
16 |
return scanners
|
17 |
|
18 |
# convert a list of scanners to yaml file
|
@@ -30,7 +30,7 @@ def read_inference_type(path):
|
|
30 |
inference_type = ""
|
31 |
with open(path, "r") as f:
|
32 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
33 |
-
inference_type = config.get("inference_type",
|
34 |
return inference_type
|
35 |
|
36 |
# write model_type to yaml file
|
@@ -45,10 +45,30 @@ def write_inference_type(use_inference):
|
|
45 |
# save inference_type to inference_type in yaml
|
46 |
yaml.dump(config, f, Dumper=Dumper)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# convert column mapping dataframe to json
|
49 |
def convert_column_mapping_to_json(df, label=""):
|
50 |
column_mapping = {}
|
51 |
column_mapping[label] = []
|
52 |
for _, row in df.iterrows():
|
53 |
column_mapping[label].append(row.tolist())
|
54 |
-
return column_mapping
|
|
|
12 |
scanners = []
|
13 |
with open(path, "r") as f:
|
14 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
15 |
+
scanners = config.get("detectors", [])
|
16 |
return scanners
|
17 |
|
18 |
# convert a list of scanners to yaml file
|
|
|
30 |
inference_type = ""
|
31 |
with open(path, "r") as f:
|
32 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
33 |
+
inference_type = config.get("inference_type", "")
|
34 |
return inference_type
|
35 |
|
36 |
# write model_type to yaml file
|
|
|
45 |
# save inference_type to inference_type in yaml
|
46 |
yaml.dump(config, f, Dumper=Dumper)
|
47 |
|
48 |
+
# read column mapping from yaml file
|
49 |
+
def read_column_mapping(path):
|
50 |
+
column_mapping = {}
|
51 |
+
with open(path, "r") as f:
|
52 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
53 |
+
column_mapping = config.get("column_mapping", dict())
|
54 |
+
return column_mapping
|
55 |
+
|
56 |
+
# write column mapping to yaml file
|
57 |
+
def write_column_mapping(mapping):
|
58 |
+
with open(YAML_PATH, "r") as f:
|
59 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
60 |
+
if mapping is None:
|
61 |
+
del config["column_mapping"]
|
62 |
+
else:
|
63 |
+
config["column_mapping"] = mapping
|
64 |
+
with open(YAML_PATH, "w") as f:
|
65 |
+
# save column_mapping to column_mapping in yaml
|
66 |
+
yaml.dump(config, f, Dumper=Dumper)
|
67 |
+
|
68 |
# convert column mapping dataframe to json
|
69 |
def convert_column_mapping_to_json(df, label=""):
|
70 |
column_mapping = {}
|
71 |
column_mapping[label] = []
|
72 |
for _, row in df.iterrows():
|
73 |
column_mapping[label].append(row.tolist())
|
74 |
+
return column_mapping
|
wordings.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONFIRM_MAPPING_DETAILS_MD = '''
|
2 |
+
<h1 style="text-align: center;">
|
3 |
+
Giskard Evaluator
|
4 |
+
</h1>
|
5 |
+
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
6 |
+
'''
|
7 |
+
|
8 |
+
CONFIRM_MAPPING_DETAILS_FAIL_MD = '''
|
9 |
+
<h1 style="text-align: center;">
|
10 |
+
Confirm Pre-processing Details
|
11 |
+
</h1>
|
12 |
+
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
13 |
+
'''
|
14 |
+
|
15 |
+
CONFIRM_MAPPING_DETAILS_FAIL_RAW= '''
|
16 |
+
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
17 |
+
'''
|