inoki-giskard commited on
Commit
45c5476
·
1 Parent(s): 4641c89

Quick fix for inference API not ready

Browse files
text_classification.py CHANGED
@@ -7,9 +7,13 @@ import pandas as pd
7
  from transformers import pipeline
8
  import requests
9
  import os
 
10
 
11
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
12
 
 
 
 
13
  def get_labels_and_features_from_dataset(ds):
14
  try:
15
  dataset_features = ds.features
@@ -72,13 +76,19 @@ def hf_inference_api(model_id, hf_token, payload):
72
  )
73
  url = f"{hf_inference_api_endpoint}/models/{model_id}"
74
  headers = {"Authorization": f"Bearer {hf_token}"}
75
- response = requests.post(url, headers=headers, json=payload)
76
- if response.status_code != 200:
77
- logging.ERROR(f"Request to inference API returns {response.status_code}")
78
- try:
79
- return response.json()
80
- except Exception:
81
- return {"error": response.content}
 
 
 
 
 
 
82
 
83
  def check_model_pipeline(model_id):
84
  try:
@@ -262,7 +272,7 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
262
  ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
263
  if "text" not in ds.features.keys():
264
  # Dataset does not have text column
265
- prediction_input = ds[0][ds.features.keys()[0]]
266
  else:
267
  prediction_input = ds[0]["text"]
268
 
@@ -276,8 +286,9 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
276
  prediction_result = {
277
  f'{result["label"]}': result["score"] for result in results
278
  }
279
- except Exception:
280
  # Pipeline prediction failed, need to provide labels
 
281
  return prediction_input, None
282
 
283
  return prediction_input, prediction_result
 
7
  from transformers import pipeline
8
  import requests
9
  import os
10
+ import time
11
 
12
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
13
 
14
+ logger = logging.getLogger(__file__)
15
+
16
+
17
  def get_labels_and_features_from_dataset(ds):
18
  try:
19
  dataset_features = ds.features
 
76
  )
77
  url = f"{hf_inference_api_endpoint}/models/{model_id}"
78
  headers = {"Authorization": f"Bearer {hf_token}"}
79
+ output = {"error": "First attemp"}
80
+ attempt = 30
81
+ while "error" in output and attempt > 0:
82
+ response = requests.post(url, headers=headers, json=payload)
83
+ if response.status_code != 200:
84
+ logging.error(f"Request to inference API returns {response.status_code}")
85
+ try:
86
+ return response.json()
87
+ except Exception:
88
+ logging.error(f"{response.content}")
89
+ output = {"error": response.content}
90
+ attempt -= 1
91
+ time.sleep(2)
92
 
93
  def check_model_pipeline(model_id):
94
  try:
 
272
  ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
273
  if "text" not in ds.features.keys():
274
  # Dataset does not have text column
275
+ prediction_input = ds[0][list(ds.features.keys())[0]]
276
  else:
277
  prediction_input = ds[0]["text"]
278
 
 
286
  prediction_result = {
287
  f'{result["label"]}': result["score"] for result in results
288
  }
289
+ except Exception as e:
290
  # Pipeline prediction failed, need to provide labels
291
+ logger.warn(f"Pipeline prediction failed due to {e}")
292
  return prediction_input, None
293
 
294
  return prediction_input, prediction_result
text_classification_ui_helpers.py CHANGED
@@ -209,6 +209,7 @@ def align_columns_and_show_prediction(
209
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
210
  ]
211
 
 
212
  prediction_input, prediction_output = get_example_prediction(
213
  model_id, dataset_id, dataset_config, dataset_split
214
  )
 
209
  gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
210
  ]
211
 
212
+ # FIXME: prefiction_output could be None
213
  prediction_input, prediction_output = get_example_prediction(
214
  model_id, dataset_id, dataset_config, dataset_split
215
  )