Spaces:
Sleeping
Sleeping
File size: 3,598 Bytes
87d91a7 2419492 3651eaa 2419492 62b2a7f 0af1d8d c1071da 510810d 089e6cb 3651eaa 7f39ca4 0699667 7f39ca4 0699667 83f75b0 672cfcb c058625 7f39ca4 c058625 7f39ca4 83f75b0 7f39ca4 c058625 7f39ca4 7d3dd84 c058625 1658ae9 7f39ca4 2c60f43 0699667 c058625 3651eaa c058625 7f39ca4 c058625 3651eaa c058625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
from huggingface_hub import login
import os
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
#vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to("cuda")
generator = torch.Generator(device="cuda")
#pipe.enable_model_cpu_offload()
def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
if use_custom_model:
custom_model = model_name
# This is where you load your trained weights
pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
prompt = prompt
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
if preprocessor == "canny":
image = load_image(image_in)
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
if use_custom_model:
lora_scale= 0.9
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=50,
generator=generator.manual_seed(seed),
cross_attention_kwargs={"scale": lora_scale}
).images
else:
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=50,
generator=generator.manual_seed(seed),
).images
images[0].save(f"result.png")
return f"result.png"
with gr.Blocks() as demo:
with gr.Column():
use_custom_model = gr.Checkbox(label="Use a custom model ?", value=False)
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
image_in = gr.Image(source="upload", type="filepath")
prompt = gr.Textbox(label="Prompt")
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
submit_btn = gr.Button("Submit")
result = gr.Image(label="Result")
submit_btn.click(
fn = infer,
inputs = [use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
outputs = [result]
)
demo.queue().launch()
|