Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
import gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
3 |
from diffusers.utils import load_image
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
-
|
9 |
|
10 |
controlnet = ControlNetModel.from_pretrained(
|
11 |
"diffusers/controlnet-canny-sdxl-1.0",
|
@@ -18,6 +24,12 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
18 |
vae=vae,
|
19 |
torch_dtype=torch.float16,
|
20 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
pipe.enable_model_cpu_offload()
|
22 |
|
23 |
def infer(image_in):
|
@@ -28,8 +40,6 @@ def infer(image_in):
|
|
28 |
|
29 |
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
30 |
|
31 |
-
|
32 |
-
|
33 |
image = np.array(image)
|
34 |
image = cv2.Canny(image, 100, 200)
|
35 |
image = image[:, :, None]
|
|
|
1 |
import gradio
|
2 |
+
from huggingface_hub import login
|
3 |
+
import os
|
4 |
+
|
5 |
+
hf_token = os.environ.get("HF_TOKEN")
|
6 |
+
login(token=hf_token)
|
7 |
+
|
8 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
9 |
from diffusers.utils import load_image
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
import cv2
|
14 |
+
|
15 |
|
16 |
controlnet = ControlNetModel.from_pretrained(
|
17 |
"diffusers/controlnet-canny-sdxl-1.0",
|
|
|
24 |
vae=vae,
|
25 |
torch_dtype=torch.float16,
|
26 |
)
|
27 |
+
|
28 |
+
custom_model = "fffiloni/eugene_jour_general"
|
29 |
+
|
30 |
+
# This is where you load your trained weights
|
31 |
+
pipe.load_lora_weights(custom_model, use_auth_token=True)
|
32 |
+
#pipe.to("cuda")
|
33 |
pipe.enable_model_cpu_offload()
|
34 |
|
35 |
def infer(image_in):
|
|
|
40 |
|
41 |
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
42 |
|
|
|
|
|
43 |
image = np.array(image)
|
44 |
image = cv2.Canny(image, 100, 200)
|
45 |
image = image[:, :, None]
|