fffiloni commited on
Commit
c058625
1 Parent(s): 3651eaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -16
app.py CHANGED
@@ -1,16 +1,11 @@
 
1
  from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
2
  from diffusers.utils import load_image
3
  from PIL import Image
4
  import torch
5
  import numpy as np
6
  import cv2
7
-
8
- prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
9
- negative_prompt = 'low quality, bad quality, sketches'
10
-
11
- image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
12
-
13
- controlnet_conditioning_scale = 0.5 # recommended for good generalization
14
 
15
  controlnet = ControlNetModel.from_pretrained(
16
  "diffusers/controlnet-canny-sdxl-1.0",
@@ -25,14 +20,39 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
25
  )
26
  pipe.enable_model_cpu_offload()
27
 
28
- image = np.array(image)
29
- image = cv2.Canny(image, 100, 200)
30
- image = image[:, :, None]
31
- image = np.concatenate([image, image, image], axis=2)
32
- image = Image.fromarray(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- images = pipe(
35
- prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
36
- ).images
 
 
37
 
38
- images[0].save(f"hug_lab.png")
 
1
+ import gradio
2
  from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
3
  from diffusers.utils import load_image
4
  from PIL import Image
5
  import torch
6
  import numpy as np
7
  import cv2
8
+ import os
 
 
 
 
 
 
9
 
10
  controlnet = ControlNetModel.from_pretrained(
11
  "diffusers/controlnet-canny-sdxl-1.0",
 
20
  )
21
  pipe.enable_model_cpu_offload()
22
 
23
+ def infer(image_in):
24
+ prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
25
+ negative_prompt = 'low quality, bad quality, sketches'
26
+
27
+ image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
28
+
29
+ controlnet_conditioning_scale = 0.5 # recommended for good generalization
30
+
31
+
32
+
33
+ image = np.array(image)
34
+ image = cv2.Canny(image, 100, 200)
35
+ image = image[:, :, None]
36
+ image = np.concatenate([image, image, image], axis=2)
37
+ image = Image.fromarray(image)
38
+
39
+ images = pipe(
40
+ prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
41
+ ).images
42
+
43
+ images[0].save(f"hug_lab.png")
44
+
45
+ with gr.Blocks() as demo:
46
+ with gr.Column():
47
+ image_in = gr.Image(source="upload", type="filepath")
48
+ prompt = gr.Textbox(label="Prompt")
49
+ submit_btn = gr.Button("Submit")
50
+ result = gr.Image(label="Result")
51
 
52
+ submit_btn.click(
53
+ fn = infer,
54
+ inputs = [image_in, prompt],
55
+ outputs = [result]
56
+ )
57
 
58
+ demo.queue().launch()