File size: 8,516 Bytes
653ce35
7ca5351
c93a0cb
 
120ac54
c93a0cb
 
454eedf
39489bd
0cbec0b
854b688
 
 
acf84db
 
 
 
 
 
 
 
 
 
3a66e37
 
1c8c6b0
eda2433
 
 
 
 
b827d8f
eda2433
3801c88
 
eda2433
35f86ae
 
eda2433
35f86ae
3a66e37
833e264
 
 
 
65a9a4b
28ef21d
833e264
28ef21d
833e264
1c8c6b0
69ec2ea
9f98966
1c8c6b0
 
 
 
 
9f98966
 
 
1c8c6b0
de0aaee
9f98966
 
 
 
 
 
 
1c8c6b0
9f98966
 
 
90e6ba4
9f98966
 
 
69ec2ea
1c8c6b0
618e51c
69ec2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7a097
 
 
69ec2ea
 
 
 
 
 
 
 
 
 
d5a4d02
 
 
 
 
 
 
454eedf
a4ad89d
fe1dcee
 
d5a4d02
 
6b906fc
 
 
 
cab2223
 
fe1dcee
b015e22
fe1dcee
b827d8f
 
 
b015e22
 
 
 
 
 
cab2223
 
b89ba4a
70de192
 
 
 
d5a4d02
b015e22
69ec2ea
967b7dd
69ec2ea
cdd5bef
 
b015e22
 
 
 
 
69ec2ea
 
b015e22
d5a4d02
b015e22
618d462
967b7dd
a4ad89d
 
6e159a1
84e6bd9
 
 
b015e22
967b7dd
 
 
 
d5a4d02
 
 
967b7dd
 
c043418
1c8c6b0
 
65a9a4b
e23155a
65a9a4b
 
6a046f7
65a9a4b
 
 
b5a5c95
a2a8df5
1c8c6b0
 
bce3142
b827d8f
43af4fa
 
 
 
f865d43
bce3142
 
 
 
1c8c6b0
 
7495fff
 
98aad5a
39489bd
7ca5351
0269ee9
 
b827d8f
a4ad89d
 
0269ee9
eaf8a3c
106f93a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import os
import subprocess
import cv2
import numpy as np
from moviepy.editor import VideoFileClip, concatenate_videoclips
import math

from huggingface_hub import snapshot_download

os.environ['CUDA_LAUNCH_BLOCKING'] = '1'


model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')



def get_frame_count(filepath):
    if filepath is not None:
        video = cv2.VideoCapture(filepath) 
        frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    
        video.release()

        #LIMITS
        #if frame_count > 24 :
        #    frame_count = 24 # limit to 24 frames to avoid cuDNN errors

        return gr.update(maximum=frame_count)

    else:
        return gr.update(value=1, maximum=12 )

def get_video_dimension(filepath):
    video = cv2.VideoCapture(filepath)
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(video.get(cv2.CAP_PROP_FPS))
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    video.release()
    return width, height, fps, frame_count

def resize_video(input_vid, output_vid, width, height, fps):
    print(f"RESIZING ...")
    # Open the input video file
    video = cv2.VideoCapture(input_vid)

    # Get the original video's width and height
    original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # Create a VideoWriter object to write the resized video
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Codec for the output video
    output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height))

    while True:
        # Read a frame from the input video
        ret, frame = video.read()
        if not ret:
            break

        # Resize the frame to the desired dimensions
        resized_frame = cv2.resize(frame, (width, height))

        # Write the resized frame to the output video file
        output_video.write(resized_frame)

    # Release the video objects
    video.release()
    output_video.release()
    print(f"RESIZE VIDEO DONE!")
    return output_vid

def normalize_and_save_video(input_video_path, output_video_path):
    print(f"NORMALIZING ...")
    cap = cv2.VideoCapture(input_video_path)

    # Get video properties
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)

    # Create VideoWriter object to save the normalized video
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Specify the codec (e.g., 'mp4v', 'XVID', 'MPEG')
    out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

    # Iterate through each frame in the video
    for _ in range(frame_count):
        ret, frame = cap.read()
        if not ret:
            break

        # Convert frame to floating point
        frame = frame.astype(np.float32)

        # Normalize pixel values to the range [0, 1]
        frame /= 255.0

        # Convert normalized frame back to 8-bit unsigned integer
        frame = (frame * 255.0).astype(np.uint8)

        # Write the normalized frame to the output video file
        out.write(frame)

    # Release the VideoCapture and VideoWriter objects
    cap.release()
    out.release()

    print(f"NORMALIZE DONE!")
    return output_video_path

def make_nearest_multiple_of_32(number):
    remainder = number % 32
    if remainder <= 16:
        number -= remainder
    else:
        number += 32 - remainder
    return number 

def run_inference(prompt, video_path, condition, video_length, seed, steps):
    
    seed = math.floor(seed)
    o_width = get_video_dimension(video_path)[0]
    o_height = get_video_dimension(video_path)[1]

    # Prepare dimensions
    if o_width > 512 :
        # Calculate the new height while maintaining the aspect ratio
        n_height = int(o_height / o_width * 512)
        n_width = 512
    
    # Get FPS of original video input
    target_fps = get_video_dimension(video_path)[2] 
    if target_fps > 12 :
        print(f"FPS is too high")
        target_fps = 12
    print(f"INPUT FPS: {target_fps}")
    
    # Count total frames according to fps
    total_frames = get_video_dimension(video_path)[3]

    # Resize the video
    r_width = make_nearest_multiple_of_32(n_width)
    r_height = make_nearest_multiple_of_32(n_height)
    print(f"multiple of 32 sizes : {r_width}x{r_height}")
    # Check if the file already exists
    if os.path.exists('resized.mp4'):
        # Delete the existing file
        os.remove('resized.mp4')
    resized = resize_video(video_path, 'resized.mp4', r_width, r_height, target_fps)

    # normalize pixels
    #normalized = normalize_and_save_video(resized, 'normalized.mp4')

    output_path = 'output/'
    os.makedirs(output_path, exist_ok=True)
            
    # Check if the file already exists
    if os.path.exists(os.path.join(output_path, f"result.mp4")):
        # Delete the existing file
        os.remove(os.path.join(output_path, f"result.mp4"))

    print(f"RUNNING INFERENCE ...")
    if video_length > 12:
        command = f"python inference.py --prompt '{prompt}' --inference_steps {steps} --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result' --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --is_long_video"
    else:
        command = f"python inference.py --prompt '{prompt}' --inference_steps {steps} --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result'  --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20"
    
    try:
        subprocess.run(command, shell=True)
    except cuda.Error as e:
        return f"CUDA Error: {e}", None
    except RuntimeError as e:
        return f"Runtime Error: {e}", None

    # Construct the video path
    video_path_output = os.path.join(output_path, f"result.mp4")

    # Resize to original video input size
    #o_width = get_video_dimension(video_path)[0]
    #o_height = get_video_dimension(video_path)[1]
    #resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)

    print(f"FINISHED !")
    return "done", video_path_output
 

css="""
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            <h1 style="text-align: center;">ControlVideo</h1>
        """)
        with gr.Row():
            with gr.Column():
                #video_in = gr.Video(source="upload", type="filepath", visible=True)
                video_path = gr.Video(source="upload", type="filepath", visible=True)
                prompt = gr.Textbox(label="prompt")
                with gr.Column():
                    video_length = gr.Slider(label="Video length", info="How many frames do you want to process ? For demo purpose, max is set to 24", minimum=1, maximum=12, step=1, value=2)
                    with gr.Row():
                        condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
                        seed = gr.Number(label="seed", value=42)
                    inference_steps = gr.Slider(label="Inference steps", minimum=25, maximum=50, step=1, value=25)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_res = gr.Video(label="result")
                status = gr.Textbox(label="result")
    video_path.change(fn=get_frame_count,
                      inputs=[video_path],
                      outputs=[video_length],
                      queue=False
                     )
    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length,
                             seed,
                             inference_steps
                            ],
                    outputs=[status, video_res])

demo.queue(max_size=12).launch()