Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ort os
|
2 |
+
import numpy as np
|
3 |
+
import argparse
|
4 |
+
import imageio
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
from diffusers import DDIMScheduler, AutoencoderKL
|
9 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
10 |
+
# from annotator.canny import CannyDetector
|
11 |
+
# from annotator.openpose import OpenposeDetector
|
12 |
+
# from annotator.midas import MidasDetector
|
13 |
+
# import sys
|
14 |
+
# sys.path.insert(0, ".")
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
import controlnet_aux
|
17 |
+
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector
|
18 |
+
from controlnet_aux.open_pose.body import Body
|
19 |
+
|
20 |
+
from models.pipeline_controlvideo import ControlVideoPipeline
|
21 |
+
from models.util import save_videos_grid, read_video, get_annotation
|
22 |
+
from models.unet import UNet3DConditionModel
|
23 |
+
from models.controlnet import ControlNetModel3D
|
24 |
+
from models.RIFE.IFNet_HDv3 import IFNet
|
25 |
+
|
26 |
+
|
27 |
+
device = "cuda"
|
28 |
+
sd_path = "checkpoints/stable-diffusion-v1-5"
|
29 |
+
inter_path = "checkpoints/flownet.pkl"
|
30 |
+
controlnet_dict = {
|
31 |
+
"pose": "checkpoints/sd-controlnet-openpose",
|
32 |
+
"depth": "checkpoints/sd-controlnet-depth",
|
33 |
+
"canny": "checkpoints/sd-controlnet-canny",
|
34 |
+
}
|
35 |
+
|
36 |
+
controlnet_parser_dict = {
|
37 |
+
"pose": OpenposeDetector,
|
38 |
+
"depth": MidasDetector,
|
39 |
+
"canny": CannyDetector,
|
40 |
+
}
|
41 |
+
|
42 |
+
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
|
43 |
+
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def get_args():
|
48 |
+
parser = argparse.ArgumentParser()
|
49 |
+
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video")
|
50 |
+
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video")
|
51 |
+
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output")
|
52 |
+
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence")
|
53 |
+
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video")
|
54 |
+
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32")
|
55 |
+
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32")
|
56 |
+
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother")
|
57 |
+
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video")
|
58 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator")
|
59 |
+
|
60 |
+
args = parser.parse_args()
|
61 |
+
return args
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
args = get_args()
|
65 |
+
os.makedirs(args.output_path, exist_ok=True)
|
66 |
+
|
67 |
+
# Height and width should be a multiple of 32
|
68 |
+
args.height = (args.height // 32) * 32
|
69 |
+
args.width = (args.width // 32) * 32
|
70 |
+
|
71 |
+
if args.condition == "pose":
|
72 |
+
pretrained_model_or_path = "lllyasviel/ControlNet"
|
73 |
+
body_model_path = hf_hub_download(pretrained_model_or_path, "annotator/ckpts/body_pose_model.pth", cache_dir="checkpoints")
|
74 |
+
body_estimation = Body(body_model_path)
|
75 |
+
annotator = controlnet_parser_dict[args.condition](body_estimation)
|
76 |
+
else:
|
77 |
+
annotator = controlnet_parser_dict[args.condition]()
|
78 |
+
|
79 |
+
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
80 |
+
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
81 |
+
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
82 |
+
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
83 |
+
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[args.condition]).to(dtype=torch.float16)
|
84 |
+
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
85 |
+
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
86 |
+
|
87 |
+
pipe = ControlVideoPipeline(
|
88 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
89 |
+
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler,
|
90 |
+
)
|
91 |
+
pipe.enable_vae_slicing()
|
92 |
+
pipe.enable_xformers_memory_efficient_attention()
|
93 |
+
pipe.to(device)
|
94 |
+
|
95 |
+
generator = torch.Generator(device="cuda")
|
96 |
+
generator.manual_seed(args.seed)
|
97 |
+
|
98 |
+
# Step 1. Read a video
|
99 |
+
video = read_video(video_path=args.video_path, video_length=args.video_length, width=args.width, height=args.height)
|
100 |
+
|
101 |
+
# Save source video
|
102 |
+
original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1)
|
103 |
+
save_videos_grid(original_pixels, os.path.join(args.output_path, "source_video.mp4"), rescale=True)
|
104 |
+
|
105 |
+
|
106 |
+
# Step 2. Parse a video to conditional frames
|
107 |
+
pil_annotation = get_annotation(video, annotator)
|
108 |
+
if args.condition == "depth" and controlnet_aux.__version__ == '0.0.1':
|
109 |
+
pil_annotation = [pil_annot[0] for pil_annot in pil_annotation]
|
110 |
+
|
111 |
+
# Save condition video
|
112 |
+
video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation]
|
113 |
+
imageio.mimsave(os.path.join(args.output_path, f"{args.condition}_condition.mp4"), video_cond, fps=8)
|
114 |
+
|
115 |
+
# Reduce memory (optional)
|
116 |
+
del annotator; torch.cuda.empty_cache()
|
117 |
+
|
118 |
+
# Step 3. inference
|
119 |
+
|
120 |
+
if args.is_long_video:
|
121 |
+
window_size = int(np.sqrt(args.video_length))
|
122 |
+
sample = pipe.generate_long_video(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
|
123 |
+
num_inference_steps=50, smooth_steps=args.smoother_steps, window_size=window_size,
|
124 |
+
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
|
125 |
+
width=args.width, height=args.height
|
126 |
+
).videos
|
127 |
+
else:
|
128 |
+
sample = pipe(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
|
129 |
+
num_inference_steps=50, smooth_steps=args.smoother_steps,
|
130 |
+
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
|
131 |
+
width=args.width, height=args.height
|
132 |
+
).videos
|
133 |
+
save_videos_grid(sample, f"{args.output_path}/{args.prompt}.mp4")
|