Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
3 |
|
4 |
from huggingface_hub import snapshot_download
|
5 |
|
@@ -13,9 +17,7 @@ for model_id in model_ids:
|
|
13 |
model_name = model_id.split('/')[-1]
|
14 |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
|
15 |
|
16 |
-
import subprocess
|
17 |
|
18 |
-
import cv2
|
19 |
|
20 |
def get_frame_count_in_duration(filepath):
|
21 |
video = cv2.VideoCapture(filepath)
|
@@ -28,29 +30,92 @@ def get_frame_count_in_duration(filepath):
|
|
28 |
return gr.update(maximum=frame_count)
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def run_inference(prompt, video_path, condition, video_length):
|
33 |
|
34 |
output_path = 'output/'
|
35 |
os.makedirs(output_path, exist_ok=True)
|
36 |
|
37 |
-
# Construct the video path
|
38 |
-
video_path_output =
|
39 |
|
40 |
# Check if the file already exists
|
41 |
if os.path.exists(video_path_output):
|
42 |
# Delete the existing file
|
43 |
os.remove(video_path_output)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
|
53 |
-
return "done", video_path_output
|
54 |
|
55 |
|
56 |
with gr.Blocks() as demo:
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import subprocess
|
4 |
+
import cv2
|
5 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
6 |
+
import math
|
7 |
|
8 |
from huggingface_hub import snapshot_download
|
9 |
|
|
|
17 |
model_name = model_id.split('/')[-1]
|
18 |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
|
19 |
|
|
|
20 |
|
|
|
21 |
|
22 |
def get_frame_count_in_duration(filepath):
|
23 |
video = cv2.VideoCapture(filepath)
|
|
|
30 |
return gr.update(maximum=frame_count)
|
31 |
|
32 |
|
33 |
+
# Function to split video into chunks
|
34 |
+
def split_video_into_chunks(video_path, chunk_size):
|
35 |
+
# Load the video clip
|
36 |
+
video = VideoFileClip(video_path)
|
37 |
+
|
38 |
+
# Calculate the total number of frames
|
39 |
+
total_frames = int(video.duration * video.fps)
|
40 |
+
|
41 |
+
# Calculate the number of chunks needed
|
42 |
+
num_chunks = math.ceil(total_frames / chunk_size)
|
43 |
+
|
44 |
+
# Create a list to store the chunks
|
45 |
+
chunks = []
|
46 |
+
|
47 |
+
# Split the video into chunks
|
48 |
+
for i in range(num_chunks):
|
49 |
+
# Calculate the start and end frame for the chunk
|
50 |
+
start_frame = i * chunk_size
|
51 |
+
end_frame = min((i + 1) * chunk_size, total_frames)
|
52 |
+
|
53 |
+
# Extract the chunk from the video
|
54 |
+
chunk = video.subclip(start_frame / video.fps, end_frame / video.fps)
|
55 |
+
|
56 |
+
# Add the chunk to the list
|
57 |
+
chunks.append(chunk)
|
58 |
+
|
59 |
+
# If the last chunk is smaller than the chunk size
|
60 |
+
if len(chunks) > 0 and len(chunks[-1]) < chunk_size:
|
61 |
+
# Adjust the end frame of the last chunk to the total frames
|
62 |
+
chunks[-1] = video.subclip(chunks[-1].t_start, video.duration)
|
63 |
+
|
64 |
+
return chunks
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
|
69 |
def run_inference(prompt, video_path, condition, video_length):
|
70 |
|
71 |
output_path = 'output/'
|
72 |
os.makedirs(output_path, exist_ok=True)
|
73 |
|
74 |
+
# Construct the final video path
|
75 |
+
video_path_output = 'final_video.mp4'
|
76 |
|
77 |
# Check if the file already exists
|
78 |
if os.path.exists(video_path_output):
|
79 |
# Delete the existing file
|
80 |
os.remove(video_path_output)
|
81 |
|
82 |
+
# Specify the path to your video file
|
83 |
+
video_path = video_path
|
84 |
+
|
85 |
+
# Specify the maximum number of frames per chunk
|
86 |
+
chunk_size = 12
|
87 |
+
|
88 |
+
# Split the video into chunks
|
89 |
+
video_chunks = split_video_into_chunks(video_path, chunk_size)
|
90 |
+
|
91 |
+
# Process each chunk and store the processed chunk filenames
|
92 |
+
processed_chunk_filenames = []
|
93 |
+
for i, chunk in enumerate(video_chunks):
|
94 |
+
# Count the frame number of the video chunk
|
95 |
+
frame_count = len(chunk)
|
96 |
+
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{chunk}' --output_path '{output_path}' --video_length {frame_count} --smoother_steps 19 20"
|
97 |
+
subprocess.run(command, shell=True)
|
98 |
+
|
99 |
+
# Construct the video path
|
100 |
+
video_path_output = os.path.join(output_path, f"{prompt}_{i}.mp4")
|
101 |
+
|
102 |
+
processed_chunk_filename = video_path_output
|
103 |
+
processed_chunk_filenames.append(processed_chunk_filename)
|
104 |
+
|
105 |
+
# Load the processed video chunks
|
106 |
+
processed_chunks = [VideoFileClip(filename) for filename in processed_chunk_filenames]
|
107 |
+
|
108 |
+
# Concatenate the processed video chunks into a final video
|
109 |
+
final_video = concatenate_videoclips(processed_chunks)
|
110 |
+
|
111 |
+
# Export the final video to a file
|
112 |
+
final_video.write_videofile('final_video.mp4')
|
113 |
+
|
114 |
+
# Clean up the temporary processed chunk files (optional)
|
115 |
+
for filename in processed_chunk_filenames:
|
116 |
+
os.remove(filename)
|
117 |
|
118 |
+
return "done", 'final_video.mp4'
|
|
|
|
|
119 |
|
120 |
|
121 |
with gr.Blocks() as demo:
|