File size: 39,595 Bytes
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
a2d2271
 
efb47b3
a566db2
 
 
 
efb47b3
a566db2
a2d2271
 
a566db2
16ed767
 
efb47b3
a2d2271
eb8c873
 
 
 
 
efb47b3
 
a2d2271
eb8c873
efb47b3
 
 
4d9b5c3
a2d2271
 
373b768
 
 
 
 
 
a2d2271
eb8c873
373b768
a2d2271
16ed767
 
 
 
 
 
 
a2d2271
eb8c873
a2d2271
16ed767
 
 
 
efb47b3
 
a566db2
eb8c873
a566db2
 
 
 
 
eb8c873
 
 
a566db2
 
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
 
 
 
 
 
a566db2
eb8c873
 
efb47b3
a2d2271
eb8c873
 
a2d2271
 
 
eb8c873
 
 
 
 
 
 
a566db2
eb8c873
a2d2271
 
 
eb8c873
a566db2
 
aa74248
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
a566db2
 
a2d2271
eb8c873
 
 
 
 
 
 
 
 
 
a566db2
 
eb8c873
 
 
 
 
 
 
 
 
a2d2271
aa74248
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
 
 
efb47b3
a2d2271
 
 
 
a566db2
a2d2271
 
 
 
4d9b5c3
a566db2
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
4d9b5c3
 
 
 
 
a566db2
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
a2d2271
 
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ed767
a2d2271
eb8c873
 
 
373b768
eb8c873
373b768
eb8c873
373b768
 
eb8c873
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
 
a2d2271
4d9b5c3
15b9748
4d9b5c3
15b9748
 
 
 
 
 
 
 
 
 
16ed767
 
 
a74a30d
 
 
 
 
 
 
 
4d9b5c3
a74a30d
4d9b5c3
 
a74a30d
 
3c29d09
4d9b5c3
16ed767
 
 
118dab9
 
16ed767
118dab9
373b768
16ed767
373b768
16ed767
 
ffc184a
4d9b5c3
 
 
 
ffc184a
 
4d9b5c3
 
 
 
 
 
 
118dab9
ffc184a
 
 
 
 
4d9b5c3
 
 
 
 
 
 
 
 
 
 
15b9748
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ed767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
 
a566db2
912d5b8
 
 
 
 
 
 
 
16ed767
 
 
 
 
912d5b8
 
 
 
 
a2d2271
 
a566db2
a2d2271
a566db2
 
 
912d5b8
e28f12c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b9748
e28f12c
 
 
 
 
 
 
 
 
 
15b9748
e28f12c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a0f4d
a566db2
e28f12c
a566db2
e28f12c
912d5b8
 
 
 
 
 
 
 
 
 
 
 
 
09a0f4d
 
 
 
 
 
912d5b8
09a0f4d
912d5b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a0f4d
 
 
 
 
 
912d5b8
09a0f4d
912d5b8
 
 
 
 
 
 
 
 
 
 
09a0f4d
912d5b8
 
 
 
09a0f4d
 
 
 
 
 
912d5b8
09a0f4d
 
912d5b8
a566db2
 
a2d2271
912d5b8
 
 
15b9748
912d5b8
bb0d660
4d9b5c3
912d5b8
 
 
15b9748
bb0d660
4d9b5c3
351cc17
 
373b768
16ed767
912d5b8
a566db2
 
 
 
 
 
 
 
912d5b8
4d9b5c3
a566db2
4d9b5c3
a566db2
16ed767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
4d9b5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0d660
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN

# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path

ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1

# Color maps for Plotly (RGB)
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}

# Classification standards with distinct colors for Matplotlib
atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# Data loading and preprocessing functions
def download_oni_file(url, filename):
    response = requests.get(url)
    response.raise_for_status()
    with open(filename, 'wb') as f:
        f.write(response.content)
    return True

def convert_oni_ascii_to_csv(input_file, output_file):
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
                       'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
    with open(input_file, 'r') as f:
        lines = f.readlines()[1:]
        for line in lines:
            parts = line.split()
            if len(parts) >= 4:
                season, year, anom = parts[0], parts[1], parts[-1]
                if season in season_to_month:
                    month = season_to_month[season]
                    if season == 'DJF':
                        year = str(int(year) - 1)
                    data[year][month-1] = anom
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
        for year in sorted(data.keys()):
            writer.writerow([year] + data[year])

def update_oni_data():
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    if download_oni_file(url, temp_file):
        if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
            os.replace(temp_file, input_file)
            convert_oni_ascii_to_csv(input_file, output_file)
        else:
            os.remove(temp_file)

def load_ibtracs_data():
    if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
        with open(CACHE_FILE, 'rb') as f:
            return pickle.load(f)
    if os.path.exists(LOCAL_iBtrace_PATH):
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    else:
        response = requests.get(iBtrace_uri)
        response.raise_for_status()
        with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
            temp_file.write(response.text)
            shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    with open(CACHE_FILE, 'wb') as f:
        pickle.dump(ibtracs, f)
    return ibtracs

def convert_typhoondata(input_file, output_file):
    with open(input_file, 'r') as infile:
        next(infile); next(infile)
        reader = csv.reader(infile)
        sid_data = defaultdict(list)
        for row in reader:
            if row:
                sid = row[0]
                sid_data[sid].append((row, row[6]))
    with open(output_file, 'w', newline='') as outfile:
        fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
        writer = csv.DictWriter(outfile, fieldnames=fieldnames)
        writer.writeheader()
        for sid, data in sid_data.items():
            start_date = min(data, key=lambda x: x[1])[1]
            end_date = max(data, key=lambda x: x[1])[1]
            for row, iso_time in data:
                writer.writerow({
                    'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
                    'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
                    'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
                    'START_DATE': start_date, 'END_DATE': end_date
                })

def load_data(oni_path, typhoon_path):
    oni_data = pd.read_csv(oni_path)
    typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
    return oni_data, typhoon_data

def process_oni_data(oni_data):
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
                 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
        'LAT': 'first', 'LON': 'first'
    }).reset_index()
    typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
    typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])

def categorize_typhoon(wind_speed):
    wind_speed_kt = wind_speed
    if wind_speed_kt >= 137:
        return 'C5 Super Typhoon'
    elif wind_speed_kt >= 113:
        return 'C4 Very Strong Typhoon'
    elif wind_speed_kt >= 96:
        return 'C3 Strong Typhoon'
    elif wind_speed_kt >= 83:
        return 'C2 Typhoon'
    elif wind_speed_kt >= 64:
        return 'C1 Typhoon'
    elif wind_speed_kt >= 34:
        return 'Tropical Storm'
    else:
        return 'Tropical Depression'

def classify_enso_phases(oni_value):
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)

# Main analysis functions (using Plotly)
def generate_typhoon_tracks(filtered_data, typhoon_search):
    fig = go.Figure()
    for sid in filtered_data['SID'].unique():
        storm_data = filtered_data[filtered_data['SID'] == sid]
        color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
        ))
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            storm_data = filtered_data[mask]
            fig.add_trace(go.Scattergeo(
                lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
                name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
            ))
    fig.update_layout(
        title='Typhoon Tracks',
        geo=dict(projection_type='natural earth', showland=True),
        height=700
    )
    return fig

def generate_wind_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_pressure_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_regression_analysis(filtered_data):
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1, 1)
        y = filtered_data['ONI']
        model = sm.OLS(y, sm.add_constant(X)).fit()
        y_pred = model.predict(sm.add_constant(X))
        fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
        slope = model.params[1]
        slopes_text = f"All Years Slope: {slope:.4f}"
    else:
        slopes_text = "Insufficient data for regression"
    return fig, slopes_text

def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[
        (merged_data['ISO_TIME'] >= start_date) & 
        (merged_data['ISO_TIME'] <= end_date)
    ]
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
    wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
    pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
    regression_fig, slopes_text = generate_regression_analysis(filtered_data)
    
    return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text

# Video animation function with fixed sidebar
def categorize_typhoon_by_standard(wind_speed, standard):
    if standard == 'taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
        return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
        return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']

def generate_track_video(year, typhoon, standard):
    if not typhoon:
        return None

    typhoon_id = typhoon.split('(')[-1].strip(')')
    storm = ibtracs.get_storm(typhoon_id)

    # Map focus
    min_lat, max_lat = min(storm.lat), max(storm.lat)
    min_lon, max_lon = min(storm.lon), max(storm.lon)
    lat_padding = max((max_lat - min_lat) * 0.3, 5)
    lon_padding = max((max_lon - min_lon) * 0.3, 5)

    # Set up the figure (900x700 pixels at 100 DPI)
    fig = plt.figure(figsize=(9, 7), dpi=100)
    ax = plt.axes([0.05, 0.05, 0.65, 0.90], projection=ccrs.PlateCarree())  # Adjusted to leave space for sidebar
    ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding], crs=ccrs.PlateCarree())

    # Add world map features
    ax.add_feature(cfeature.LAND, facecolor='lightgray')
    ax.add_feature(cfeature.OCEAN, facecolor='lightblue')
    ax.add_feature(cfeature.COASTLINE, edgecolor='black')
    ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
    ax.gridlines(draw_labels=True, linestyle='--', color='gray', alpha=0.5)

    ax.set_title(f"{year} {storm.name} Typhoon Path")

    # Initialize the line and point
    line, = ax.plot([], [], 'b-', linewidth=2, transform=ccrs.PlateCarree())
    point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
    date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10, bbox=dict(facecolor='white', alpha=0.8))

    # Add sidebar on the right
    details_title = fig.text(0.75, 0.95, "Typhoon Details", fontsize=12, fontweight='bold', verticalalignment='top')
    details_text = fig.text(0.75, 0.85, '', fontsize=10, verticalalignment='top',
                            bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))

    # Add color legend
    standard_dict = atlantic_standard if standard == 'atlantic' else taiwan_standard
    legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=f"{cat}", 
                                  markerfacecolor=details['hex'], markersize=10)
                       for cat, details in standard_dict.items()]
    fig.legend(handles=legend_elements, title="Color Legend", loc='lower right', 
               bbox_to_anchor=(0.95, 0.05), fontsize=10)

    def init():
        line.set_data([], [])
        point.set_data([], [])
        date_text.set_text('')
        details_text.set_text('')
        return line, point, date_text, details_text

    def update(frame):
        line.set_data(storm.lon[:frame+1], storm.lat[:frame+1])
        category, color = categorize_typhoon_by_standard(storm.vmax[frame], standard)
        point.set_data([storm.lon[frame]], [storm.lat[frame]])
        point.set_color(color)
        date_text.set_text(storm.time[frame].strftime('%Y-%m-%d %H:%M'))
        details = f"Name: {storm.name}\n" \
                  f"Date: {storm.time[frame].strftime('%Y-%m-%d %H:%M')}\n" \
                  f"Wind Speed: {storm.vmax[frame]:.1f} kt\n" \
                  f"Category: {category}"
        details_text.set_text(details)
        return line, point, date_text, details_text

    ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(storm.time),
                                  interval=200, blit=True, repeat=True)

    # Save as video
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
    writer = animation.FFMpegWriter(fps=5, bitrate=1800)
    ani.save(temp_file.name, writer=writer)
    plt.close(fig)

    return temp_file.name

# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
    data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
    data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
    data['western_typhoon'] = (data['LON'] <= 140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

# t-SNE clustering functions
def filter_west_pacific_coordinates(lons, lats):
    mask = (lons >= 100) & (lons <= 180) & (lats >= 0) & (lats <= 50)
    return lons[mask], lats[mask]

def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
    start_date = datetime(int(start_year), int(start_month), 1)
    end_date = datetime(int(end_year), int(end_month), 28)
    
    all_storms_data = []
    for year in range(int(start_year), int(end_year) + 1):
        season_data = ibtracs.get_season(year)
        for storm_id in season_data.summary()['id']:
            storm = ibtracs.get_storm(storm_id)
            if storm.time[0] >= start_date and storm.time[-1] <= end_date:
                lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
                if len(lons) > 1:
                    all_storms_data.append((lons, lats, np.array(storm.vmax), np.array(storm.mslp), np.array(storm.time), storm.name))

    if not all_storms_data:
        return go.Figure(), go.Figure(), go.Figure(), "No storms found in the selected period."

    # Prepare route vectors for t-SNE
    max_length = max(len(st[0]) for st in all_storms_data)
    route_vectors = []
    for lons, lats, _, _, _, _ in all_storms_data:
        interp_lons = np.interp(np.linspace(0, 1, max_length), np.linspace(0, 1, len(lons)), lons)
        interp_lats = np.interp(np.linspace(0, 1, max_length), np.linspace(0, 1, len(lats)), lats)
        route_vectors.append(np.column_stack((interp_lons, interp_lats)).flatten())
    route_vectors = np.array(route_vectors)

    # Perform t-SNE
    tsne_results = TSNE(n_components=2, random_state=42, perplexity=min(30, len(route_vectors)-1)).fit_transform(route_vectors)

    # Dynamic DBSCAN clustering
    target_clusters = min(5, len(all_storms_data) // 3)
    eps_range = np.arange(5.0, 50.0, 5.0)
    min_samples = max(3, len(all_storms_data) // 20)
    best_labels = None
    best_eps = None
    best_n_clusters = 0
    best_noise_ratio = 1.0

    for eps in eps_range:
        dbscan = DBSCAN(eps=eps, min_samples=min_samples)
        labels = dbscan.fit_predict(tsne_results)
        n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
        noise_points = np.sum(labels == -1)
        noise_ratio = noise_points / len(labels)
        
        if n_clusters >= target_clusters and noise_ratio < 0.3 and (n_clusters > best_n_clusters or (n_clusters == best_n_clusters and noise_ratio < best_noise_ratio)):
            best_labels = labels
            best_eps = eps
            best_n_clusters = n_clusters
            best_noise_ratio = noise_ratio

    if best_labels is None:
        dbscan = DBSCAN(eps=5.0, min_samples=min_samples)
        best_labels = dbscan.fit_predict(tsne_results)
        best_eps = 5.0
        best_n_clusters = len(set(best_labels)) - (1 if -1 in best_labels else 0)

    # t-SNE Scatter Plot
    fig_tsne = go.Figure()
    for cluster in set(best_labels):
        mask = best_labels == cluster
        name = "Noise" if cluster == -1 else f"Cluster {cluster}"
        fig_tsne.add_trace(go.Scatter(
            x=tsne_results[mask, 0], y=tsne_results[mask, 1], mode='markers',
            name=name, text=[all_storms_data[i][5] for i in range(len(all_storms_data)) if mask[i]],
            hoverinfo='text'
        ))
    fig_tsne.update_layout(title="t-SNE Clustering of Typhoon Routes", xaxis_title="t-SNE 1", yaxis_title="t-SNE 2")

    # Typhoon Routes Plot
    fig_routes = go.Figure()
    for i, (lons, lats, _, _, _, name) in enumerate(all_storms_data):
        cluster = best_labels[i]
        color = 'gray' if cluster == -1 else px.colors.qualitative.Plotly[cluster % len(px.colors.qualitative.Plotly)]
        fig_routes.add_trace(go.Scattergeo(
            lon=lons, lat=lats, mode='lines+markers', name=name,
            line=dict(color=color), marker=dict(size=4), hoverinfo='text', text=name
        ))
    fig_routes.update_layout(
        title="Typhoon Routes by Cluster",
        geo=dict(scope='asia', projection_type='mercator', showland=True, landcolor='lightgray')
    )

    # Cluster Statistics Plot
    cluster_stats = []
    for cluster in set(best_labels) - {-1}:
        mask = best_labels == cluster
        winds = [all_storms_data[i][2].max() for i in range(len(all_storms_data)) if mask[i]]
        pressures = [all_storms_data[i][3].min() for i in range(len(all_storms_data)) if mask[i]]
        cluster_stats.append({
            'Cluster': cluster,
            'Count': np.sum(mask),
            'Mean Wind': np.mean(winds),
            'Mean Pressure': np.mean(pressures)
        })
    stats_df = pd.DataFrame(cluster_stats)
    fig_stats = px.bar(stats_df, x='Cluster', y=['Mean Wind', 'Mean Pressure'], barmode='group',
                       title="Cluster Statistics (Mean Wind Speed and Pressure)")

    # Cluster Information
    cluster_info = f"Number of Clusters: {best_n_clusters}\nBest EPS: {best_eps}\nNoise Points: {best_noise_ratio*100:.1f}%"
    for stat in cluster_stats:
        cluster_info += f"\nCluster {stat['Cluster']}: {stat['Count']} storms, Mean Wind: {stat['Mean Wind']:.1f} kt, Mean Pressure: {stat['Mean Pressure']:.1f} hPa"

    return fig_tsne, fig_routes, fig_stats, cluster_info

# Gradio Interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
    gr.Markdown("# Typhoon Analysis Dashboard")
    
    with gr.Tab("Overview"):
        gr.Markdown("""
        ## Welcome to the Typhoon Analysis Dashboard
        
        This dashboard allows you to analyze typhoon data in relation to ENSO phases.
        
        ### Features:
        - **Track Visualization**: View typhoon tracks by time period and ENSO phase
        - **Wind Analysis**: Examine wind speed vs ONI relationships
        - **Pressure Analysis**: Analyze pressure vs ONI relationships
        - **Longitude Analysis**: Study typhoon generation longitude vs ONI
        - **Path Animation**: Watch animated typhoon paths with a sidebar
        - **TSNE Cluster**: Perform t-SNE clustering on typhoon routes
        
        Select a tab above to begin your analysis.
        """)
    
    with gr.Tab("Track Visualization"):
        with gr.Row():
            start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            typhoon_search = gr.Textbox(label="Typhoon Search")
        analyze_btn = gr.Button("Generate Tracks")
        tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
        typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
        
        def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
            start_date = datetime(start_year, start_month, 1)
            end_date = datetime(end_year, end_month, 28)
            filtered_data = merged_data[
                (merged_data['ISO_TIME'] >= start_date) & 
                (merged_data['ISO_TIME'] <= end_date)
            ]
            filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
            if enso_phase != 'all':
                filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
            unique_storms = filtered_data['SID'].unique()
            count = len(unique_storms)
            fig = go.Figure()
            for sid in unique_storms:
                storm_data = typhoon_data[typhoon_data['SID'] == sid]
                name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
                storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
                color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
                    name=f"{name} ({storm_data['SEASON'].iloc[0]})",
                    line=dict(width=1.5, color=color),
                    hoverinfo="name"
                ))
            if typhoon_search:
                search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
                if search_mask.any():
                    for sid in typhoon_data[search_mask]['SID'].unique():
                        storm_data = typhoon_data[typhoon_data['SID'] == sid]
                        fig.add_trace(go.Scattergeo(
                            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                            name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
                            line=dict(width=3, color='yellow'),
                            marker=dict(size=5),
                            hoverinfo="name"
                        ))
            fig.update_layout(
                title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
                geo=dict(
                    projection_type='natural earth',
                    showland=True,
                    showcoastlines=True,
                    landcolor='rgb(243, 243, 243)',
                    countrycolor='rgb(204, 204, 204)',
                    coastlinecolor='rgb(204, 204, 204)',
                    center=dict(lon=140, lat=20),
                    projection_scale=3
                ),
                legend_title="Typhoons by ENSO Phase",
                showlegend=True,
                height=700
            )
            fig.add_annotation(
                x=0.02, y=0.98, xref="paper", yref="paper",
                text="Red: El Niño, Blue: La Niña, Green: Neutral",
                showarrow=False, align="left",
                bgcolor="rgba(255,255,255,0.8)"
            )
            return fig, f"Total typhoons displayed: {count}"
            
        analyze_btn.click(
            fn=get_full_tracks,
            inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
            outputs=[tracks_plot, typhoon_count]
        )
    
    with gr.Tab("Wind Analysis"):
        with gr.Row():
            wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            wind_typhoon_search = gr.Textbox(label="Typhoon Search")
        wind_analyze_btn = gr.Button("Generate Wind Analysis")
        wind_scatter = gr.Plot(label="Wind Speed vs ONI")
        wind_regression_results = gr.Textbox(label="Wind Regression Results")
        
        def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
            results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
            regression = perform_wind_regression(start_year, start_month, end_year, end_month)
            return results[1], regression
            
        wind_analyze_btn.click(
            fn=get_wind_analysis,
            inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
            outputs=[wind_scatter, wind_regression_results]
        )
    
    with gr.Tab("Pressure Analysis"):
        with gr.Row():
            pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
        pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
        pressure_scatter = gr.Plot(label="Pressure vs ONI")
        pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
        
        def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
            results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
            regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
            return results[2], regression
            
        pressure_analyze_btn.click(
            fn=get_pressure_analysis,
            inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
            outputs=[pressure_scatter, pressure_regression_results]
        )
    
    with gr.Tab("Longitude Analysis"):
        with gr.Row():
            lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
        lon_analyze_btn = gr.Button("Generate Longitude Analysis")
        regression_plot = gr.Plot(label="Longitude vs ONI")
        slopes_text = gr.Textbox(label="Regression Slopes")
        lon_regression_results = gr.Textbox(label="Longitude Regression Results")
        
        def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
            results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
            regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
            return results[3], results[4], regression
            
        lon_analyze_btn.click(
            fn=get_longitude_analysis,
            inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
            outputs=[regression_plot, slopes_text, lon_regression_results]
        )
    
    with gr.Tab("Typhoon Path Animation"):
        with gr.Row():
            year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
            typhoon_dropdown = gr.Dropdown(label="Typhoon")
            standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
        
        animate_btn = gr.Button("Generate Animation")
        path_video = gr.Video(label="Typhoon Path Animation", elem_id="path_video")
        animation_info = gr.Markdown("""
        ### Animation Instructions
        1. Select a year and typhoon from the dropdowns
        2. Choose a classification standard (Atlantic or Taiwan)
        3. Click "Generate Animation"
        4. Use the video player's built-in controls to play, pause, or scrub through the animation
        5. The animation shows the typhoon track growing over a world map, with:
           - Date on the bottom left
           - Sidebar on the right showing typhoon details (name, date, wind speed, category) as it moves
           - Color legend with colored markers on the bottom right
        """)
        
        def update_typhoon_options(year):
            season = ibtracs.get_season(int(year))
            storm_summary = season.summary()
            options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
            return gr.update(choices=options, value=options[0] if options else None)
        
        year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
        animate_btn.click(
            fn=generate_track_video,
            inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
            outputs=path_video
        )
    
    with gr.Tab("TSNE Cluster"):
        with gr.Row():
            tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
            tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
        tsne_analyze_btn = gr.Button("Analyze")
        tsne_plot = gr.Plot(label="t-SNE Clusters")
        routes_plot = gr.Plot(label="Typhoon Routes")
        stats_plot = gr.Plot(label="Cluster Statistics")
        cluster_info = gr.Textbox(label="Cluster Information", lines=10)
        
        tsne_analyze_btn.click(
            fn=update_route_clusters,
            inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
            outputs=[tsne_plot, routes_plot, stats_plot, cluster_info]
        )

    # Custom CSS for better visibility
    gr.HTML("""
    <style>
    #tracks_plot, #path_video {
        height: 700px !important;
        width: 100%;
    }
    .plot-container {
        min-height: 600px;
    }
    .gr-plotly {
        width: 100% !important;
    }
    </style>
    """)

demo.launch(share=True)