File size: 10,905 Bytes
c5c9abd 048101b 2defee0 53792d8 5c7029b 53792d8 f0fa26d 5c7029b 2defee0 5c7029b 86e56e5 cc7c120 53792d8 cc7c120 5c7029b cc7c120 f0fa26d d6846cc 366ecce 5c7029b 366ecce 53792d8 5c7029b 366ecce 53792d8 99c2d01 06af375 f0fa26d 99c2d01 366ecce 5c7029b f0fa26d 366ecce f0fa26d a894787 366ecce a894787 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce cc178c4 366ecce cc7c120 5c7029b 366ecce 5c7029b 2defee0 366ecce 2defee0 366ecce 5c7029b 366ecce 5c7029b 366ecce f0fa26d 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b f0fa26d a4ed697 366ecce 5c7029b 366ecce 5c7029b 366ecce 5c7029b 366ecce e2901c5 366ecce 8d1fcc3 366ecce 5c7029b 366ecce c5c9abd 366ecce c5c9abd 366ecce 5c7029b cfb1726 5c7029b 53792d8 07c85d3 8d1fcc3 53792d8 07c85d3 53792d8 366ecce 53792d8 366ecce 53792d8 366ecce 99c2d01 53792d8 366ecce 53792d8 1a2236e 53792d8 cfb1726 5c7029b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os, unicodedata, string, random
from scripts.ctcalign import aligner, wav16m
from scripts.tapi import tiro
from scripts.reaper2pass import estimate_pitch, save_pitch
import scripts.clusterprosody as cl
# given a Sentence string,
# using a metadata file of SQ, // SQL1adult_metadata.tsv
# get every file from SQ of a L1 adult with that sentence
# report how many, or if 0.
def run(sentence, voices, start_end_word_ix):
#sentence = 'hvaða sjúkdómar geta fylgt óbeinum reykingum'
#voices = ['Alfur','Dilja','Karl', 'Dora']
# On tts.tiro.is speech marks are only available
# for the voices: Alfur, Dilja, Karl and Dora.
# in practise, only for alfur and dilja.
corpus_meta = '/home/user/app/human_data/SQL1adult10s_metadata.tsv'
speech_dir = '/home/user/app/human_data/audio/squeries/'
speech_aligns = '/home/user/app/human_data/align/squeries/'
speech_f0 = '/home/user/app/human_data/f0/squeries/'
align_model_path ="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = '/home/user/app/tts_data/'
norm_sentence = snorm(sentence)
sentence = sentence.replace('\t', ' ')
human_rec_ids = get_samromur_queries(norm_sentence, corpus_meta, speech_dir, speech_aligns, align_model_path, speech_f0)
if voices:
temp_tts_sample, tts_sent_dir = get_tts(sentence,voices,tts_dir,align_model_path)
voices = [voices[0]] # TODO. now limit one voice at a time.
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e, html = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_sent_dir, voices, start_end_word_ix)
# also stop forgetting duration.
return temp_tts_sample, score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e, html
def snorm(s):
s = ''.join([c.lower() for c in s if not unicodedata.category(c).startswith("P") ])
while ' ' in s:
s = s.replace(' ', ' ')
return s
def create_temp_sent_list():
corpusdb = '/home/user/app/human_data/SQL1adult10s_metadata.tsv'
with open(corpusdb,'r') as handle:
meta = handle.read().splitlines()
meta = [l.split('\t')[3] for l in meta[1:]]
meta = sorted(list(set(meta)))
return meta
def align_file(wav_path, output_path, norm_sentence, word_aligner = None, model_path = "carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"):
model_word_sep = '|'
model_blank_tk = '[PAD]'
if not word_aligner:
print('initiating forced alignment, can take some time...')
word_aligner = aligner(model_path,model_word_sep,model_blank_tk)
word_aln = word_aligner(wav16m(wav_path),norm_sentence,is_normed=True)
word_aln = [[str(x) for x in l] for l in word_aln]
with open(output_path,'w') as handle:
handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
return word_aligner
# find all the recordings of a given sentence
# listed in the corpus metadata.
# find or create their alignments and f0 tracking.
# sentence should be provided lowercase without punctuation
# TODO something not fatal to interface if <10 --
# metadata file for SQ is already filtered.
# TODO handle audio that is not originally .wav
# not an issue for SQ
def get_samromur_queries(sentence, corpusdb, speech_dir, align_dir, align_model_path, f0_dir, reaper_path = "REAPER/build/reaper"):
with open(corpusdb,'r') as handle:
meta = handle.read().splitlines()
meta = [l.split('\t') for l in meta[1:]]
# column index 4 of db is normalised sentence text
meta = [l for l in meta if l[4] == sentence]
if len(meta) < 10:
if len(meta) < 1:
print('This sentence does not exist in the corpus')
else:
print('Under 10 copies of the sentence: skipping.')
return []
else:
print(f'{len(meta)} recordings of sentence <{sentence}>')
word_aligner = None
if not os.path.exists(align_dir):
os.makedirs(align_dir)
if not os.path.exists(f0_dir):
os.makedirs(f0_dir)
for rec in meta:
wpath = f'{speech_dir}{rec[2]}'
apath = align_dir + rec[2].replace('.wav','.tsv')
if not os.path.exists(apath):
word_aligner = align_file(wpath,apath, rec[4], word_aligner = word_aligner, model_path = align_model_path)
fpath = f0_dir + rec[2].replace('.wav','.f0')
if not os.path.exists(fpath):
fpath = f0_dir + rec[2].replace('.wav','.f0')
f0_data = estimate_pitch(wpath, reaper_path)
save_pitch(f0_data,fpath)
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
return human_rec_ids
# check if the TTS wavs, alignments, f0 exist for this sentence
# if not, make them
def get_tts(sentence,voices,ttsdir,align_model_path,reaper_path = "REAPER/build/reaper"):
dpath = setup_tts_sent(sentence,ttsdir)
sample_paths = []
word_aligner = None
for v in voices:
wpath = f'{dpath}/{v}.wav'
apath = f'{dpath}/{v}.tsv'
fpath = f'{dpath}/{v}.f0'
if not os.path.exists(wpath):
wf = tiro(sentence,v,save=f'{dpath}/')
if not os.path.exists(apath):
word_aligner = align_file(wpath, apath, snorm(sentence), word_aligner = word_aligner, model_path = align_model_path)
if not os.path.exists(fpath):
f0_data = estimate_pitch(wpath, reaper_path)
save_pitch(f0_data,fpath)
sample_paths.append(wpath)
# TODO TEMP
# return for single last voice
temp_sample_path = wpath
return temp_sample_path, dpath
# find if dir for this sentence exists yet
# or make one, and record it.
# punctuation can affect synthesis
# so index by original sentence, not normed text
def setup_tts_sent(sentence,ttsdir,meta_path = 'tts_meta.tsv'):
if not os.path.exists(f'{ttsdir}'):
os.makedirs(f'{ttsdir}')
sentence = sentence.replace('\n',' ')
with open(f'{ttsdir}{meta_path}','a+') as handle:
handle.seek(0)
tts_meta = handle.read().splitlines()
tts_meta = [l.split('\t') for l in tts_meta]
tts_meta = {sent:s_id for s_id,sent in tts_meta}
if sentence not in tts_meta.keys():
sent_id = sentence.replace(' ','_')[:33]
rand_id = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))
while f'{sent_id}_{rand_id}' in tts_meta.values():
rand_id = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))
sent_id = f'{sent_id}_{rand_id}'
handle.write(f'{sent_id}\t{sentence}\n')
else:
sent_id = tts_meta[sentence]
sent_dir = f'{ttsdir}{sent_id}'
if not os.path.exists(f'{sent_dir}'):
os.makedirs(f'{sent_dir}')
return sent_dir
# speedup
def precompute(corpusdb, speech_dir, align_dir, align_model_path, f0_dir, reaper_path, fromi=None,toi=None):
with open(corpusdb,'r') as handle:
meta = handle.read().splitlines()
meta = [l.split('\t') for l in meta[1:]]
word_aligner = None
if not os.path.exists(align_dir):
os.makedirs(align_dir)
if not os.path.exists(f0_dir):
os.makedirs(f0_dir)
if (fromi and toi):
meta = meta[fromi:toi]
for rec in meta:
wpath = f'{speech_dir}{rec[2]}'
apath = align_dir + rec[2].replace('.wav','.tsv')
if not os.path.exists(apath):
word_aligner = align_file(wpath,apath, rec[4], word_aligner = word_aligner, model_path = align_model_path)
fpath = f0_dir + rec[2].replace('.wav','.f0')
if not os.path.exists(fpath):
fpath = f0_dir + rec[2].replace('.wav','.f0')
f0_data = estimate_pitch(wpath, reaper_path)
save_pitch(f0_data,fpath)
return max(toi,len(meta))
def localtest():
sentence = 'En er hægt að taka orðalagið bókstaflega?'#'Ef svo er, hvað heita þau þá?'#'Var það ekki nóg?'
voices = ['Alfur_v2'] #,'Dilja']
# make for now the interface allows max one voice
start_end_word_ix = '1-3'#'5-7'
locl = '/home/caitlinr/work/peval/pce/'
corpus_meta = locl+'human_data/SQL1adult10s_metadata.tsv'
speech_dir = locl+'human_data/audio/squeries/'
speech_aligns = locl+'human_data/align/squeries/'
speech_f0 = locl+'human_data/f0/squeries/'
align_model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = locl+'tts_data/'
reaper_exc = '/home/caitlinr/work/notterra/REAPER/build/reaper'
norm_sentence = snorm(sentence)
human_rec_ids = get_samromur_queries(norm_sentence, corpus_meta, speech_dir, speech_aligns, align_model_path, speech_f0, reaper_path = reaper_exc)
if voices:
one_audio_sample, tts_sent_dir = get_tts(sentence,voices,tts_dir,align_model_path,reaper_path = reaper_exc)
voices = [voices[0]] # TODO. now limit one voice at a time.
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e, html = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_sent_dir, voices, start_end_word_ix)
#localtest()
# torch matplotlib librosa sklearn_extra pydub
# env pclustr
#lp = '/home/caitlinr/work/peval/pce/human_data/'
#fnum = precompute(f'{lp}SQL1adult10s_metadata.tsv',f'{lp}audio/squeries/',f'{lp}align/squeries/','/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h',f'{lp}f0/squeries/', '/home/caitlinr/work/notterra/REAPER/build/reaper')
#print(f'have alignments and f0 files for {fnum} recordings')
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# EVALUATION
# - of the tts
# - of the method: consistency? coherency / interpretability of 'best' voice across different features; alt. ability to recover good & problematic features from a combined method if that is chosen as the best?
# - how similar are the results across different sentences? are any voices consistently good or bad; if multiple are good, are they good in the same way or good in different ways; do humans agree.
# >> bc hey THAT could at least be an argument for the method, u might have to take time for human judgement once but then you can keep re using it free for new voices. or to select among alternative generations given you might know a context and know what you're going for in that context. etc.
|