catiR
commited on
Commit
•
07c85d3
1
Parent(s):
a4ed697
adjust plot
Browse files- scripts/clusterprosody.py +35 -15
- scripts/runSQ.py +2 -2
scripts/clusterprosody.py
CHANGED
@@ -222,14 +222,22 @@ def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voi
|
|
222 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
223 |
|
224 |
#tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
225 |
-
tts_fig_p = plot_one_cluster(words,'pitch',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
226 |
-
fig_mid_p = plot_one_cluster(words,'pitch',mid_data,seg_aligns,mid_cluster)
|
227 |
-
fig_bad_p = plot_one_cluster(words,'pitch',bad_data,seg_aligns,bad_cluster)
|
228 |
|
229 |
|
230 |
-
tts_fig_e = plot_one_cluster(words,'rmse',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
231 |
-
fig_mid_e = plot_one_cluster(words,'rmse',mid_data,seg_aligns,mid_cluster)
|
232 |
-
fig_bad_e = plot_one_cluster(words,'rmse',bad_data,seg_aligns,bad_cluster)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
235 |
|
@@ -298,18 +306,27 @@ def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts
|
|
298 |
|
299 |
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
# realign at the start of each word
|
302 |
# destroys pause information but overall more legible
|
303 |
def reset_cluster_times(words,cluster_speakers,human_aligns,tts_align):
|
304 |
words = words.split('_')
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
308 |
if tts_align:
|
309 |
-
|
310 |
-
retimes.append((words[i],max(
|
311 |
return retimes
|
312 |
|
|
|
313 |
def retime_speaker_xvals(retimes, speaker_aligns, speaker_xvals):
|
314 |
new_xvals = []
|
315 |
def xlim(x,i,retimes,speaker_aligns):
|
@@ -321,7 +338,7 @@ def retime_speaker_xvals(retimes, speaker_aligns, speaker_xvals):
|
|
321 |
xdiff = st-s
|
322 |
new_xvals += [x+xdiff for x in speaker_xvals if (x>= s) and xlim(x,i,retimes,speaker_aligns) ]
|
323 |
|
324 |
-
return [round(x,
|
325 |
|
326 |
|
327 |
|
@@ -329,6 +346,7 @@ def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=No
|
|
329 |
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
|
330 |
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
331 |
cc = 0
|
|
|
332 |
fig = plt.figure(figsize=(10, 5))
|
333 |
|
334 |
if feature.lower() in ['pitch','f0']:
|
@@ -341,7 +359,7 @@ def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=No
|
|
341 |
pfunc = plt.plot
|
342 |
else:
|
343 |
print('problem with the figure')
|
344 |
-
return fig
|
345 |
|
346 |
|
347 |
# boundary for start of each word
|
@@ -361,6 +379,7 @@ def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=No
|
|
361 |
# datapoint interval is 0.005 seconds
|
362 |
feat_xvals = [x*0.005 for x in range(len(feats))]
|
363 |
feat_xvals = retime_speaker_xvals(retimes, word_times, feat_xvals)
|
|
|
364 |
|
365 |
|
366 |
#pfunc(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
|
@@ -371,7 +390,8 @@ def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=No
|
|
371 |
feat_xvals = feat_xvals[:-(len(w_xvals))]
|
372 |
feats = feats[:-(len(w_xvals))]
|
373 |
|
374 |
-
|
|
|
375 |
cc += 1
|
376 |
if cc >= len(colors):
|
377 |
cc=0
|
@@ -393,7 +413,7 @@ def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=No
|
|
393 |
#plt.show()
|
394 |
|
395 |
|
396 |
-
return fig
|
397 |
|
398 |
|
399 |
|
|
|
222 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
223 |
|
224 |
#tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
225 |
+
tts_fig_p, best_cc = plot_one_cluster(words,'pitch',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
226 |
+
fig_mid_p, mid_cc = plot_one_cluster(words,'pitch',mid_data,seg_aligns,mid_cluster)
|
227 |
+
fig_bad_p, bad_cc = plot_one_cluster(words,'pitch',bad_data,seg_aligns,bad_cluster)
|
228 |
|
229 |
|
230 |
+
tts_fig_e, _ = plot_one_cluster(words,'rmse',matched_data,seg_aligns,best_cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
231 |
+
fig_mid_e, _ = plot_one_cluster(words,'rmse',mid_data,seg_aligns,mid_cluster)
|
232 |
+
fig_bad_e, _ = plot_one_cluster(words,'rmse',bad_data,seg_aligns,bad_cluster)
|
233 |
+
|
234 |
+
|
235 |
+
# TODO
|
236 |
+
# not necessarily here, bc paths to audio files.
|
237 |
+
spk_cc_map = [('Best',best_cluster,best_cc), ('Mid',mid_cluster,mid_cc), ('Last',bad_cluster,bad_cc)]
|
238 |
+
print(spk_cc_map)
|
239 |
+
#playable = audio_htmls(spk_cc_map)
|
240 |
+
|
241 |
|
242 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
243 |
|
|
|
306 |
|
307 |
|
308 |
|
309 |
+
|
310 |
+
|
311 |
+
# TODO:
|
312 |
+
# redo this so that it doesnt just take the max Start Time of each word ;
|
313 |
+
# but, in effect,
|
314 |
+
# finds the max Duration of the 1st word, the max Duration of the next, and so on.
|
315 |
# realign at the start of each word
|
316 |
# destroys pause information but overall more legible
|
317 |
def reset_cluster_times(words,cluster_speakers,human_aligns,tts_align):
|
318 |
words = words.split('_')
|
319 |
+
|
320 |
+
retimes = [(words[0], 0.0)]
|
321 |
+
for i in range(len(words)-1):
|
322 |
+
#starts = [human_aligns[spk][i][1] for spk in cluster_speakers]
|
323 |
+
gaps = [human_aligns[spk][i+1][1]-human_aligns[spk][i][1] for spk in cluster_speakers]
|
324 |
if tts_align:
|
325 |
+
gaps.append(tts_align[i+1][1] - tts_align[i][1])
|
326 |
+
retimes.append((words[i+1],retimes[i][1]+max(gaps)))
|
327 |
return retimes
|
328 |
|
329 |
+
|
330 |
def retime_speaker_xvals(retimes, speaker_aligns, speaker_xvals):
|
331 |
new_xvals = []
|
332 |
def xlim(x,i,retimes,speaker_aligns):
|
|
|
338 |
xdiff = st-s
|
339 |
new_xvals += [x+xdiff for x in speaker_xvals if (x>= s) and xlim(x,i,retimes,speaker_aligns) ]
|
340 |
|
341 |
+
return [round(x,3) for x in new_xvals]
|
342 |
|
343 |
|
344 |
|
|
|
346 |
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
|
347 |
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
348 |
cc = 0
|
349 |
+
spk_ccs = [] # for external display
|
350 |
fig = plt.figure(figsize=(10, 5))
|
351 |
|
352 |
if feature.lower() in ['pitch','f0']:
|
|
|
359 |
pfunc = plt.plot
|
360 |
else:
|
361 |
print('problem with the figure')
|
362 |
+
return fig, []
|
363 |
|
364 |
|
365 |
# boundary for start of each word
|
|
|
379 |
# datapoint interval is 0.005 seconds
|
380 |
feat_xvals = [x*0.005 for x in range(len(feats))]
|
381 |
feat_xvals = retime_speaker_xvals(retimes, word_times, feat_xvals)
|
382 |
+
|
383 |
|
384 |
|
385 |
#pfunc(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
|
|
|
390 |
feat_xvals = feat_xvals[:-(len(w_xvals))]
|
391 |
feats = feats[:-(len(w_xvals))]
|
392 |
|
393 |
+
|
394 |
+
spk_ccs.append((spk,colors[cc]))
|
395 |
cc += 1
|
396 |
if cc >= len(colors):
|
397 |
cc=0
|
|
|
413 |
#plt.show()
|
414 |
|
415 |
|
416 |
+
return fig, spk_ccs
|
417 |
|
418 |
|
419 |
|
scripts/runSQ.py
CHANGED
@@ -222,11 +222,11 @@ def setup_tts_sent(sentence,ttsdir,meta_path = 'tts_meta.tsv'):
|
|
222 |
|
223 |
|
224 |
def localtest():
|
225 |
-
sentence = 'Ef svo er, hvað heita þau þá?'#'Var það ekki nóg?'
|
226 |
voices = ['Alfur_v2'] #,'Dilja']
|
227 |
# make for now the interface allows max one voice
|
228 |
|
229 |
-
start_end_word_ix = '5-7'
|
230 |
|
231 |
locl = '/home/caitlinr/work/peval/pce/'
|
232 |
corpus_meta = locl+'human_data/SQL1adult10s_metadata.tsv'
|
|
|
222 |
|
223 |
|
224 |
def localtest():
|
225 |
+
sentence = 'En er hægt að taka orðalagið bókstaflega?'#'Ef svo er, hvað heita þau þá?'#'Var það ekki nóg?'
|
226 |
voices = ['Alfur_v2'] #,'Dilja']
|
227 |
# make for now the interface allows max one voice
|
228 |
|
229 |
+
start_end_word_ix = '1-3'#'5-7'
|
230 |
|
231 |
locl = '/home/caitlinr/work/peval/pce/'
|
232 |
corpus_meta = locl+'human_data/SQL1adult10s_metadata.tsv'
|