catiR commited on
Commit
5c7029b
1 Parent(s): e6c2cf8

queries only sentences at least 10 speakers

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Pce
3
  emoji: ⚡
4
  colorFrom: pink
5
  colorTo: pink
 
1
  ---
2
+ title: Prosody clustering and evaluation
3
  emoji: ⚡
4
  colorFrom: pink
5
  colorTo: pink
human_data/SQL1adult10s_metadata.tsv ADDED
The diff for this file is too large to render. See raw diff
 
scripts/ctcalign.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
2
+ import torch
3
+ import numpy as np
4
+ import soundfile as sf
5
+ from dataclasses import dataclass
6
+
7
+
8
+ # read wav audio, make mono and 16khz if necessary
9
+ def wav16m(sound_path):
10
+ aud, sr = sf.read(sound_path, dtype=np.float32)
11
+ if len(aud.shape) == 2:
12
+ aud = aud.mean(1)
13
+ if sr != 16000:
14
+ alen = int(aud.shape[0] / sr * 16000)
15
+ aud = signal.resample(aud, alen)
16
+ return aud
17
+
18
+
19
+ def aligner(model_path,model_word_separator = '|', model_blank_token = '[PAD]'):
20
+
21
+ # build labels dict from a processor where it is not directly accessible
22
+ def get_processor_labels(processor,word_sep,max_labels=100):
23
+ ixs = sorted(list(range(max_labels)),reverse=True)
24
+ return {processor.tokenizer.decode(n) or word_sep:n for n in ixs}
25
+
26
+ #------------------------------------------
27
+ # setup wav2vec2
28
+ #------------------------------------------
29
+
30
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
+ torch.random.manual_seed(0)
32
+ max_labels = 100 # any reasonable number higher than vocab + extra + special tokens in any language used
33
+
34
+
35
+ model = Wav2Vec2ForCTC.from_pretrained(model_path).to(device)
36
+ processor = Wav2Vec2Processor.from_pretrained(model_path)
37
+ labels_dict = get_processor_labels(processor,model_word_separator)
38
+ blank_id = labels_dict[model_blank_token]
39
+
40
+
41
+ #convert frame-numbers to timestamps in seconds
42
+ # w2v2 step size is about 20ms, or 50 frames per second
43
+ def f2s(fr):
44
+ return fr/50
45
+
46
+
47
+
48
+ #------------------------------------------
49
+ # forced alignment with ctc decoder
50
+ # based on implementation of
51
+ # https://pytorch.org/audio/main/tutorials/forced_alignment_tutorial.html
52
+ #------------------------------------------
53
+
54
+
55
+ # return the label class probability of each audio frame
56
+ # wav is the wav data already read in, NOT the file path.
57
+ def get_frame_probs(wav):
58
+ with torch.inference_mode(): # similar to with torch.no_grad():
59
+ input_values = processor(wav,sampling_rate=16000).input_values[0]
60
+ input_values = torch.tensor(input_values, device=device).unsqueeze(0)
61
+ emits = model(input_values).logits
62
+ emits = torch.log_softmax(emits, dim=-1)
63
+ return emits[0].cpu().detach()
64
+
65
+
66
+ def get_trellis(emission, tokens, blank_id):
67
+
68
+ num_frame = emission.size(0)
69
+ num_tokens = len(tokens)
70
+ trellis = torch.empty((num_frame + 1, num_tokens + 1))
71
+ trellis[0, 0] = 0
72
+ trellis[1:, 0] = torch.cumsum(emission[:, 0], 0) # len of this slice of trellis is len of audio frames)
73
+ trellis[0, -num_tokens:] = -float("inf") # len of this slice of trellis is len of transcript tokens
74
+ trellis[-num_tokens:, 0] = float("inf")
75
+ for t in range(num_frame):
76
+ trellis[t + 1, 1:] = torch.maximum(
77
+ # Score for staying at the same token
78
+ trellis[t, 1:] + emission[t, blank_id],
79
+ # Score for changing to the next token
80
+ trellis[t, :-1] + emission[t, tokens],
81
+ )
82
+ return trellis
83
+
84
+
85
+
86
+ @dataclass
87
+ class Point:
88
+ token_index: int
89
+ time_index: int
90
+ score: float
91
+
92
+ @dataclass
93
+ class Segment:
94
+ label: str
95
+ start: int
96
+ end: int
97
+ score: float
98
+
99
+ @property
100
+ def mfaform(self):
101
+ return f"{f2s(self.start)},{f2s(self.end)},{self.label}"
102
+
103
+ @property
104
+ def length(self):
105
+ return self.end - self.start
106
+
107
+
108
+
109
+ def backtrack(trellis, emission, tokens, blank_id):
110
+ # Note:
111
+ # j and t are indices for trellis, which has extra dimensions
112
+ # for time and tokens at the beginning.
113
+ # When referring to time frame index `T` in trellis,
114
+ # the corresponding index in emission is `T-1`.
115
+ # Similarly, when referring to token index `J` in trellis,
116
+ # the corresponding index in transcript is `J-1`.
117
+ j = trellis.size(1) - 1
118
+ t_start = torch.argmax(trellis[:, j]).item()
119
+
120
+ path = []
121
+ for t in range(t_start, 0, -1):
122
+ # 1. Figure out if the current position was stay or change
123
+ # `emission[J-1]` is the emission at time frame `J` of trellis dimension.
124
+ # Score for token staying the same from time frame J-1 to T.
125
+ stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
126
+ # Score for token changing from C-1 at T-1 to J at T.
127
+ changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]
128
+
129
+ # 2. Store the path with frame-wise probability.
130
+ prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
131
+ # Return token index and time index in non-trellis coordinate.
132
+ path.append(Point(j - 1, t - 1, prob))
133
+
134
+ # 3. Update the token
135
+ if changed > stayed:
136
+ j -= 1
137
+ if j == 0:
138
+ break
139
+ else:
140
+ raise ValueError("Failed to align")
141
+ return path[::-1]
142
+
143
+
144
+ def merge_repeats(path,transcript):
145
+ i1, i2 = 0, 0
146
+ segments = []
147
+ while i1 < len(path):
148
+ while i2 < len(path) and path[i1].token_index == path[i2].token_index: # while both path steps point to the same token index
149
+ i2 += 1
150
+ score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
151
+ segments.append( # when i2 finally switches to a different token,
152
+ Segment(
153
+ transcript[path[i1].token_index],# to the list of segments, append the token from i1
154
+ path[i1].time_index, # time of the first path-point of that token
155
+ path[i2 - 1].time_index + 1, # time of the final path-point for that token.
156
+ score,
157
+ )
158
+ )
159
+ i1 = i2
160
+ return segments
161
+
162
+
163
+
164
+ def merge_words(segments, separator):
165
+ words = []
166
+ i1, i2 = 0, 0
167
+ while i1 < len(segments):
168
+ if i2 >= len(segments) or segments[i2].label == separator:
169
+ if i1 != i2:
170
+ segs = segments[i1:i2]
171
+ word = "".join([seg.label for seg in segs])
172
+ score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
173
+ words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
174
+ i1 = i2 + 1
175
+ i2 = i1
176
+ else:
177
+ i2 += 1
178
+ return words
179
+
180
+
181
+
182
+
183
+ #------------------------------------------
184
+ # handle, i/o, etc.
185
+ #------------------------------------------
186
+
187
+
188
+ # generate mfa format for character (phone) and word alignments
189
+ # skip the word separator as it is not a phone
190
+ def mfalike(chars,wds,wsep):
191
+ hed = ['Begin,End,Label,Type,Speaker\n']
192
+ wlines = [f'{w.mfaform},words,000\n' for w in wds]
193
+ slines = [f'{ch.mfaform},phones,000\n' for ch in chars if ch.label != wsep]
194
+ return (''.join(hed+wlines+slines))
195
+
196
+ # generate basic exportable list format for character OR word alignments
197
+ # skip the word separator as it is not a phone
198
+ def basic(segs,wsep="|"):
199
+ return [[s.label,f2s(s.start),f2s(s.end)] for s in segs if s.label != wsep]
200
+
201
+
202
+ # generate numbered dicts to use in dtw
203
+ # alignment is given in numbered frames, not converted to timestamps
204
+ def fordtw(words,segments):
205
+
206
+ # index i, and word/seg, startframe, endframe
207
+ # preppend the index i to the word or seg
208
+ def _ix(i,elem):
209
+ return [f'{i:03d}__{elem.label}', elem.start, elem.end]
210
+
211
+ w_al = [_ix(i,wse) for i,wse in enumerate(words)] # from tuple to list
212
+
213
+ wsegdict = {}
214
+ for w,s,e in w_al:
215
+ nlett = len(w.split('__')[1])
216
+ wsegs = segments[:nlett]
217
+ wstart = s
218
+ wsegs = [_ix(i,cse) for i,cse in enumerate(wsegs)]
219
+ wsegs = [[seg, ss-s, se-s] for seg,ss,se in wsegs]
220
+ wsegdict[w] = wsegs
221
+ segments = segments[nlett:]
222
+
223
+ return w_al, wsegdict
224
+
225
+
226
+ # basic cleaning
227
+ # skip with is_normed=True
228
+ # if transcript was already normalised externally
229
+ def normalise_transcript(xcp):
230
+ xcp = xcp.lower()
231
+ xcp = xcp.replace('-','')
232
+ while ' ' in xcp:
233
+ xcp = xcp.replace(' ', ' ')
234
+ return xcp
235
+
236
+
237
+ # needs pad labels added to correctly time first segment
238
+ # and therefore add word sep character as placeholder in transcript
239
+ def prep_transcript(xcp,is_normed):
240
+ if not is_normed:
241
+ xcp = normalise_transcript(xcp)
242
+ xcp = xcp.replace(' ',model_word_separator)
243
+ label_ids = [labels_dict[c] for c in xcp]
244
+ label_ids = [blank_id] + label_ids + [blank_id]
245
+ xcp = f'{model_word_separator}{xcp}{model_word_separator}'
246
+ return xcp,label_ids
247
+
248
+
249
+ def _align(wav_data,transcript,is_normed=False):
250
+
251
+ norm_transcript,rec_label_ids = prep_transcript(transcript,is_normed)
252
+ emit = get_frame_probs(wav_data)
253
+ trellis = get_trellis(emit, rec_label_ids, blank_id)
254
+ path = backtrack(trellis, emit, rec_label_ids, blank_id)
255
+
256
+ segments = merge_repeats(path,norm_transcript)
257
+ words = merge_words(segments, model_word_separator)
258
+
259
+ #return fordtw(words,model_word_separator), basic(segments,model_word_separator)
260
+ return basic(words,model_word_separator)
261
+
262
+ return _align
263
+
264
+
265
+ # usage:
266
+ # from ctcalign import aligner, wav16m
267
+ # model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
268
+ # model_word_sep = '|'
269
+ # model_blank_tk = '[PAD]'
270
+ # caligner = aligner(model_path,model_word_sep,model_blank_tk)
271
+ # word_aln, seg_aln = caligner(wav16m(wav_path),transcript_string)
272
+
273
+
274
+
scripts/runSQ.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from ctcalign import aligner, wav16m
3
+ from tapi import tiro
4
+
5
+ # given a Sentence string,
6
+ # using a metadata file of SQ, // SQL1adult_metadata.tsv
7
+ # get every file from SQ of a L1 adult with that sentence
8
+ # report how many, or if 0.
9
+
10
+
11
+ def run():
12
+ sentence = 'hvaða sjúkdómar geta fylgt óbeinum reykingum'
13
+ voices = ['Alfur','Dilja','Karl', 'Dora']
14
+ # On tts.tiro.is speech marks are only available
15
+ # for the voices: Alfur, Dilja, Karl and Dora.
16
+
17
+ corpus_meta = 'human_data/SQL1adult_metadata.tsv'
18
+ speech_dir = 'human_data/audio/squeries/'
19
+ speech_aligns = 'human_data/aligns/squeries/'
20
+ speech_f0 = 'human_data/f0/squeries/'
21
+ align_model_path ="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
22
+
23
+ tts_dir = 'tts_data/'
24
+
25
+
26
+ meta = get_recordings(sentence, corpus_meta)
27
+ if meta:
28
+ align_human(meta,speech_aligns,speech_dir,align_model_path)
29
+ f0_human(meta, speech_f0, speech_dir, 'TODO path to reaper')
30
+ if voices:
31
+ get_tts(sentence,voices,tts_dir)
32
+ f0_tts(sentence, voices, tts_dir, 'TODO path to reaper')
33
+
34
+
35
+ # find all the recordings of a given sentence
36
+ # listed in the corpus metadata.
37
+ # sentence should be provided lowercase without punctuation
38
+ def get_recordings(sentence, corpusdb):
39
+ with open(corpusdb,'r') as handle:
40
+ meta = handle.read().splitlines()
41
+ meta = [l.split('\t') for l in meta[1:]]
42
+
43
+ # column index 4 of db is normalised sentence text
44
+ smeta = [l for l in meta if l[4] == sentence]
45
+
46
+ if len(smeta) < 10:
47
+ if len(smeta) < 1:
48
+ print('This sentence does not exist in the corpus')
49
+ else:
50
+ print('Under 10 copies of the sentence: skipping.')
51
+ return []
52
+ else:
53
+ print(f'{len(smeta)} recordings of sentence <{sentence}>')
54
+ return smeta
55
+
56
+
57
+
58
+ # check if word alignments exist for a set of human speech recordings
59
+ # if not, warn, and make them with ctcalign.
60
+ def align_human(meta,align_dir,speech_dir,model_path):
61
+
62
+ model_word_sep = '|'
63
+ model_blank_tk = '[PAD]'
64
+
65
+ no_align = []
66
+
67
+ for rec in meta:
68
+ apath = align_dir + rec[2].replace('.wav','.tsv')
69
+ if not os.path.exists(apath):
70
+ no_align.append(rec)
71
+
72
+ if no_align:
73
+ print(f'Need to run alignment for {len(no_align)} files')
74
+ caligner = aligner(model_path,model_word_sep,model_blank_tk)
75
+ for rec in no_align:
76
+ wav_path = f'{speech_dir}{rec[1]}/{rec[2]}'
77
+ word_aln = caligner(wav16m(wav_path),rec[4],is_normed=True)
78
+ apath = align_dir + rec[2].replace('.wav','.tsv')
79
+ word_aln = [[str(x) for x in l] for l in word_aln]
80
+ with open(apath,'w') as handle:
81
+ handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
82
+ else:
83
+ print('All alignments existed')
84
+
85
+
86
+
87
+ # check if f0s exist for all of those files.
88
+ # if not, warn, and make them with TODO reaper
89
+ def f0_human(meta, f0_dir, speech_dir, reaper_path):
90
+ no_f0 = []
91
+
92
+ for rec in meta:
93
+ fpath = f0_dir + rec[2].replace('.wav','.f0')
94
+ if not os.path.exists(fpath):
95
+ no_f0.append(rec)
96
+
97
+ if no_f0:
98
+ print(f'Need to estimate pitch for {len(no_f0)} recordings')
99
+ #TODO
100
+
101
+ else:
102
+ print('All speech pitch trackings existed')
103
+
104
+
105
+
106
+ # # # # # # # # #
107
+ #################
108
+ # TODO
109
+ # IMPLEMENT GOOD 2 STEP PITCH ESTIMATION
110
+ # TODO
111
+ #################
112
+ # # # # # # # # #
113
+
114
+
115
+
116
+
117
+ # check if the TTS wavs + align jsons exist for this sentence
118
+ # if not, warn and make them with TAPI ******
119
+ def get_tts(sentence,voices,ttsdir):
120
+
121
+ # assume the first 64 chars of sentence are enough
122
+ dpath = sentence.replace(' ','_')[:65]
123
+
124
+ no_voice = []
125
+
126
+ for v in voices:
127
+ wpath = f'{ttsdir}{dpath}/{v}.wav'
128
+ jpath = f'{ttsdir}{dpath}/{v}.json'
129
+ if not (os.path.exists(wpath) and os.path.exists(jpath)):
130
+ no_voice.append(v)
131
+
132
+ if no_voice:
133
+ print(f'Need to generate TTS for {len(no_voice)} voices')
134
+ if not os.path.exists(f'{ttsdir}{dpath}'):
135
+ os.mkdir(f'{ttsdir}{dpath}')
136
+ for v in voices:
137
+ wf, af = tiro(sentence,v,save=f'{ttsdir}{dpath}/')
138
+
139
+ else:
140
+ print('TTS for all voices existed')
141
+
142
+
143
+
144
+ # check if the TTS f0s exist
145
+ # if not warn + make
146
+ # TODO collapse functions
147
+ def f0_tts(sentence, voices, ttsdir, reaper_path):
148
+
149
+ # assume the first 64 chars of sentence are enough
150
+ dpath = sentence.replace(' ','_')[:65]
151
+
152
+ no_f0 = []
153
+
154
+ for v in voices:
155
+ fpath = f'{ttsdir}{dpath}/{v}.f0'
156
+ if not os.path.exists(fpath):
157
+ no_f0.append(v)
158
+
159
+ if no_f0:
160
+ print(f'Need to estimate pitch for {len(no_f0)} voices')
161
+ #TODO
162
+
163
+ else:
164
+ print('All TTS pitch trackings existed')
165
+
166
+
167
+
168
+
169
+
170
+
171
+ run()
172
+
173
+
174
+
175
+
176
+
177
+
178
+ # https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
179
+
180
+ # CLUSTER the humans
181
+ # - read energy and pitch, to alignments
182
+ # - dtw based with selected chunking ? code should exist.
183
+
184
+ # ... experimental variants?
185
+ # ** 1 dimension at a time vs 2 on top of each other
186
+ # ** 25 points resampling (euclidean, kmeans, i guess....) vs all points dtw kmediods
187
+ # +/or maybe some intermediate parts of that??? like 25 points dtw medoids particularly **
188
+ # --different normings for pitch? different settings for energy (tbqh i hope not too much?)
189
+ # TODO '''replacement with a constant low value''' ********
190
+ # errrrrrrrm duration?
191
+ # duration feature vector will have a different length than the others, BUT,
192
+ # besides the single clustering,,
193
+ # i SUPPOSE one could TRY assigning the phone's 'speech rate' value to every frame of the phone, so it doesn't change while the other 2 values do change.... like it would still VAGUELY represent that 2 people elongating the same vowel/syllable are doing similar things with duration while someone eliding that vowel is doing a different durational thing right there?
194
+ # might want to z-score this dimension across ALL speakers tho not within a speaker
195
+ # try doing it both ways at least. bc not sure to what extent i want absolute vs. relative rate info here.
196
+ #(note - unless chengs dur metric is of a kind where only rel makes sense in the first place. idr.)
197
+
198
+
199
+
200
+
201
+ # GRAPH the humans.
202
+ # - probably modify this code a bit to centre on boundary.
203
+ # - idk.
204
+
205
+
206
+ # TEST each TTS
207
+ # - structure its features
208
+ # - find its avg dist for each human cluster
209
+ # - find the lowest dist cluster
210
+ # - report the dist for i guess this and all clusters
211
+ # - GRAPH the tts with its best cluster
212
+
213
+
214
+
215
+ # EVALUATION
216
+ # - of the tts
217
+ # - of the method: consistency? coherency / interpretability of 'best' voice across different features; alt. ability to recover good & problematic features from a combined method if that is chosen as the best?
218
+ # - how similar are the results across different sentences? are any voices consistently good or bad; if multiple are good, are they good in the same way or good in different ways; do humans agree.
219
+ # >> bc hey THAT could at least be an argument for the method, u might have to take time for human judgement once but then you can keep re using it free for new voices. or to select among alternative generations given you might know a context and know what you're going for in that context. etc.
220
+
221
+
scripts/tapi.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json, os, requests, warnings, wave
2
+ warnings.filterwarnings("ignore")
3
+
4
+
5
+
6
+ # synthesise speech
7
+ # save 16khz mono wav file
8
+ # and word-level timestamps
9
+ # return paths to wave and alignment files
10
+ def tiro(text,voice,save='./'):
11
+
12
+ # endpoint working 2023
13
+ url = 'https://tts.tiro.is/v0/speech'
14
+ headers = {'Content-Type': 'application/json'}
15
+
16
+
17
+ # synthesis
18
+ payload_tts = {
19
+ "Engine": "standard",
20
+ "LanguageCode": "is-IS",
21
+ "OutputFormat": "pcm",
22
+ "SampleRate":"16000",
23
+ "Text": text,
24
+ "VoiceId": voice
25
+ }
26
+
27
+ # word time alignments
28
+ payload_aln = {
29
+ "Engine": "standard",
30
+ "LanguageCode": "is-IS",
31
+ "OutputFormat": "json",
32
+ "SpeechMarkTypes": ["word"],
33
+ "Text": text,
34
+ "VoiceId": voice
35
+ }
36
+
37
+
38
+ tts_data = requests.post(url, headers=headers, json=payload_tts, verify=False)
39
+ aln_data = requests.post(url, headers=headers, json=payload_aln, verify=False)
40
+
41
+
42
+ #fname = save+text.replace(':','').replace('/','-')
43
+ #wname = fname+'.wav'
44
+ #aname = fname+'.json'
45
+ wname = save+voice+'.wav'
46
+ aname = save+voice+'.json'
47
+
48
+ with wave.open(wname,'wb') as f:
49
+ f.setnchannels(1)
50
+ f.setframerate(16000)
51
+ f.setsampwidth(2)
52
+ f.writeframes(tts_data.content)
53
+
54
+ with open(aname,'w') as f:
55
+ f.write('{"alignments": [')
56
+ f.write(aln_data.content.decode().replace('}\n{','},\n {'))
57
+ f.write(']}')
58
+
59
+ return(os.path.abspath(wname),os.path.abspath(aname))
60
+
61
+
62
+
63
+
64
+ #sentence = "Hæ hæ hæ hæ! Ég heiti Gervimaður Finnland, en þú?"
65
+ #voice = "Alfur"
66
+
67
+ #wf, af = tiro(sentence,voice)
68
+
69
+ #print(wf, af)